home libri books Fumetti ebook dvd top ten sconti 0 Carrello


Torna Indietro

li jie jack - name reactions

Name Reactions A Collection of Detailed Mechanisms and Synthetic Applications




Disponibilità: Normalmente disponibile in 15 giorni


PREZZO
54,98 €



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Editore:

Springer

Pubblicazione: 07/2006
Edizione: 3rd. expanded ed.





Trama

I don't have my name on anything that I don't really do. –Heidi Klum Can the organic chemists associated with so-called “Named Reactions” make the same claim as supermodel Heidi Klum? Many scholars of chemistry do not hesi- te to point out that the names associated with “name reactions” are often not the actual inventors. For instance, the Arndt-Eistert reaction has nothing to do with either Arndt or Eistert, Pummerer did not discover the “Pummerer” rearran- ment, and even the famous Birch reduction owes its initial discovery to someone named Charles Wooster (first reported in a DuPont patent). The list goes on and on… But does that mean we should ignore, boycott, or outlaw “named reac- ons”? Absolutely not. The above examples are merely exceptions to the rule. In fact, the chemists associated with name reactions are typically the original dis- verers, contribute greatly to its general use, and/or are the first to popularize the transformation. Regardless of the controversial history underlying certain named reactions, it is the students of organic chemistry who benefit the most from the - taloging of reactions by name. Indeed, it is with education in mind that Dr. Jack Li has masterfully brought the chemical community the latest edition of Name Reactions. It is clear why this beautiful treatise has rapidly become a bestseller within the chemical community.




Sommario

Alder ene reaction.- Aldol condensation.- Algar-Flynn-Oyamada Reaction.- Allan-Robinson reaction.- Appel reaction.- Arndt-Eistert homologation.- Baeyer-Villiger oxidation.- Baker-Venkataraman rearrangement.- Bamberger rearrangement.- Bamford-Stevens reaction.- Barbier coupling reaction.- Bargellini reaction.- Bartoli indole synthesis.- Barton radical decarboxylation.- Barton-McCombie deoxygenation.- Barton nitrite photolysis.- Barton-Zard reaction.- Batcho-Leimgruber indole synthesis.- Baylis-Hillman reaction.- Beckmann rearrangement.- Beirut reaction.- Benzilic acid rearrangement.- Benzoin condensation.- Bergman cyclization.- Biginelli pyrimidone synthesis.- Birch reduction.- Bischler-Möhlau indole synthesis.- Bischler-Napieralski reaction.- Blaise reaction.- Blanc chloromethylation.- Blum aziridine synthesis.- Boekelheide reaction.- Boger pyridine synthesis.- Borch reductive amination.- Borsche-Drechsel cyclization.- Boulton-Katritzky rearrangement.- Bouveault aldehyde synthesis.- Bouveault-Blanc reduction.- Boyland-Sims oxidation.- Bradsher reaction.- Brook rearrangement.- Brown hydroboration.- Bucherer carbazole synthesis.- Bucherer reaction.- Bucherer-Bergs reaction.- Büchner-Curtius-Schlotterbeck reaction.- Büchner method of ring expansion.- Buchwald-Hartwig C-N and C-O bond formation reactions.- Burgess dehydrating reagent.- Cadiot-Chodkiewicz coupling.- Camps quinolinol synthesis.- Cannizzaro disproportionation.- Carroll rearrangement.- Castro-Stephens coupling.- Chan alkyne reduction.- Chan-Lam coupling reaction.- Chapman rearrangement.- Chichibabin pyridine synthesis.- Chugaev elimination.- Ciamician-Dennsted rearrangement.- Claisen condensation.- Claisen isoxazole synthesis.- Claisen rearrangements.- Clemmensen reduction.- Combes quinoline synthesis.- Conrad-Limpach reaction.- Cope elimination reaction.- Cope rearrangement.- Corey-Bakshi-Shibata (CBS) reduction.- Corey-Chaykovsky reaction.- Corey-Fuchs reaction.- Corey-Kim oxidation.- Corey-Nicolaou macrolactonization.- Corey-Seebach reaction.- Corey-Winter olefin synthesis.- Criegee glycol cleavage.- Criegee mechanism of ozonolysis.- Curtius rearrangement.- Dakin oxidation.- Dakin-West reaction.- Danheiser annulation.- Darzens glycidic ester condensation.- Davis chiral oxaziridine reagents.- Delépine amine synthesis.- de Mayo reaction.- Demjanov rearrangement.- Dess-Martin periodinane oxidation.- Dieckmann condensation.- Diels-Alder reaction.- Dienone-phenol rearrangement.- Di-?-methane rearrangement.- Doebner quinoline synthesis.- Dötz reaction.- Dowd-Beckwith ring expansion.- Erlenmeyer-Plöchl azlactone synthesis.- Eschenmoser-Tanabe fragmentation.- Eschweiler-Clarke reductive alkylation of amines.- Evans aldol reaction.- Favorskii rearrangement and quasi-Favorskii rearrangement.- Feist-Bénary furan synthesis.- Ferrier carbocyclization.- Ferrier glycal allylic rearrangement.- Fiesselmann thiophene synthesis.- Fischer indole synthesis.- Fischer oxazole synthesis.- Fleming-Kumada oxidation.- Friedel-Crafts reaction.- Friedländer quinoline synthesis.- Fries rearrangement.- Fukuyama amine synthesis.- Fukuyama reduction.- Gabriel synthesis.- Gabriel-Colman rearrangement.- Gassman indole synthesis.- Gattermann-Koch reaction.- Gewald aminothiophene synthesis.- Glaser coupling.- Gomberg-Bachmann reaction.- Gould-Jacobs reaction.- Grignard reaction.- Grob fragmentation.- Guareschi-Thorpe condensation.- Hajos-Wiechert reaction.- Haller-Bauer reaction.- Hantzsch dihydropyridine synthesis.- Hantzsch pyrrole synthesis.- Heck reaction.- Hegedus indole synthesis.- Hell-Volhard-Zelinsky reaction.- Henry nitroaldol reaction.- Hinsberg synthesis of thiophene derivatives.- Hiyama cross-coupling reaction.- Hofmann rearrangement.- Hofmann-Löffler-Freytag reaction.- Horner-Wadsworth-Emmons reaction.- Houben-Hoesch reaction.- Hunsdiecker-Borodin reaction.- Hurd-Mori 1,2,3-thiadiazole synthesis.- Jacobsen-Katsuki epoxidation.- Japp-Klingemann hydrazone synthesis.- Jones oxidation.- Julia-Kocienski olefination.- Julia-Lythgoe olefination.- Kahne-Crich glycosidation.- Keck macrolactonization.- Knoevenagel condensation.- Knorr pyrazole synthesis.- Koch-Haaf carbonylation.- Koenig-Knorr glycosidation.- Kolbe-Schmitt reaction.- Kostanecki reaction.- Kröhnke pyridine synthesis.- Kumada cross-coupling reaction.- Lawesson’s reagent.- Leuckart-Wallach reaction.- Lossen rearrangement.- McFadyen-Stevens reduction.- McMurry coupling.- MacMillan catalyst.- Mannich reaction.- Marshall boronate fragmentation.- Martin’s sulfurane dehydrating reagent.- Masamune-Roush conditions.- Meerwein-Ponndorf-Verley reduction.- Meisenheimer complex.- [1,2]-Meisenheimer rearrangement.- [2,3]-Meisenheimer rearrangement.- Meth-Cohn quinoline synthesis.- Meyers oxazoline method.- Meyer-Schuster rearrangement.- Michael addition.- Michaelis-Arbuzov phosphonate synthesis.- Midland reduction.- Mislow-Evans rearrangement.- Mitsunobu reaction.- Miyaura borylation.- Moffatt oxidation.- Montgomery coupling.- Morgan-Walls reaction.- Mori-Ban indole synthesis.- Mukaiyama aldol reaction.- Mukaiyama Michael addition.- Mukaiyama reagent.- Myers-Saito cyclization.- Nazarov cyclization.- Neber rearrangement.- Nef reaction.- Negishi cross-coupling reaction.- Nenitzescu indole synthesis.- Nicholas reaction.- Nicolaou dehydrogenation.- Nicolaou hydroxy-dithioketal cyclization.- Nicolaou hydroxy-ketone reductive cyclic ether formation.- Nicolaou oxyselenation.- Noyori asymmetric hydrogenation.- Nozaki-Hiyama-Kishi reaction.- Oppenauer oxidation.- Overman rearrangement.- Paal thiophene synthesis.- Paal-Knorr furan synthesis.- Parham cyclization.- Passerini reaction.- Paternó-Büchi reaction.- Pauson-Khand cyclopentenone synthesis.- Payne rearrangement.- Pechmann coumarin synthesis.- Perkin reaction.- Petasis reaction.- Peterson olefination.- Pictet-Gams isoquinoline synthesis.- Pictet-Spengler tetrahydroisoquinoline synthesis.- Pinacol rearrangement.- Pinner reaction.- Polonovski reaction.- Polonovski-Potier reaction.- Pomeranz-Fritsch reaction.- Prévost trans-dihydroxylation.- Prins reaction.- Pschorr cyclization.- Pummerer rearrangement.- Ramberg-Bäcklund reaction.- Reformatsky reaction.- Regitz diazo synthesis.- Reimer-Tiemann reaction.- Reissert aldehyde synthesis.- Reissert indole synthesis.- Ring-closing metathesis (RCM).- Ritter reaction.- Robinson annulation.- Robinson-Gabriel synthesis.- Robinson-Schöpf reaction.- Rosenmund reduction.- Rubottom oxidation.- Rupe rearrangement.- Saegusa oxidation.- Sakurai allylation reaction.- Sandmeyer reaction.- Schiemann reaction.- Schmidt reaction.- Schmidt’s trichloroacetimidate glycosidation reaction.- Shapiro reaction.- Sharpless asymmetric amino hydroxylation.- Sharpless asymmetric epoxidation.- Sharpless asymmetric dihydroxylation.- Sharpless olefin synthesis.- Simmons-Smith reaction.- Skraup quinoline synthesis.- Smiles rearrangement.- Sommelet reaction.- Sommelet-Hauser rearrangement.- Sonogashira reaction.- Staudinger ketene cycloaddition.- Staudinger reduction.- Sternbach benzodiazepine synthesis.- Stetter reaction.- Still-Gennari phosphonate reaction.- Stille coupling.- Stille-Kelly reaction.- Stobbe condensation.- Stork enamine reaction.- Strecker amino acid synthesis.- Suzuki coupling.- Swern oxidation.- Takai iodoalkene synthesis.- Tebbe olefination.- TEMPO-mediated oxidation.- Thorpe-Ziegler reaction.- Tsuji-Trost reaction.- Ugi reaction.- Ullmann reaction.- van Leusen oxazole synthesis.- Vilsmeier-Haack reaction.- Vilsmeier mechanism for acid chloride formation.- Vinylcyclopropane-cyclopentene rearrangement.- von Braun reaction.- Wacker oxidation.- Wagner-Meerwein rearrangement.- Weiss-Cook reaction.- Wharton oxygen transposition reaction.- Willgerodt-Kindler reaction.- Wittig reaction.- [1,2]-Wittig rearrangement.- [2,3]-Wittig rearrangement.- Wohl-Ziegler reaction.- Wolff rearrangement.- Wolff-Kishner reduction.- Yamaguchi esterification.- Zincke reaction.










Altre Informazioni

ISBN:

9783540300304

Condizione: Nuovo
Dimensioni: 235 x 155 mm Ø 1172 gr
Formato: Copertina rigida
Illustration Notes:XX, 653 p.
Pagine Arabe: 653
Pagine Romane: xx


Dicono di noi