home libri books Fumetti ebook dvd top ten sconti 0 Carrello


Torna Indietro

phillips wf - mechanics of flight 2e

Mechanics of Flight 2e




Disponibilità: Normalmente disponibile in 20 giorni
A causa di problematiche nell'approvvigionamento legate alla Brexit sono possibili ritardi nelle consegne.


PREZZO
166,95 €
NICEPRICE
158,60 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Pubblicazione: 12/2009
Edizione: 2009 2ª





Sommario

Preface. Acknowledgments. 1. Overview of Aerodynamics. 1.1. Introduction and Notation. 1.2. Fluid Statics and the Atmosphere. 1.3. The Boundary Layer Concept. 1.4. Inviscid Aerodynamics. 1.5. Review of Elementary Potential Flows. 1.6. Incompressible Flow over Airfoils. 1.7. Trailing-Edge Flaps and Section Flap Effectiveness. 1.8. Incompressible Flow over Finite Wings. 1.9. Flow over Multiple Lifting Surfaces. 1.10. Wing Stall and Maximum Lift Coefficient. 1.11. Wing Aerodynamic Center and Pitching Moment. 1.12. Inviscid Compressible Aerodynamics. 1.13. Compressible Subsonic Flow. 1.14. Supersonic Flow. 1.15. Problems. 2. Overview of Propulsion. 2.1. Introduction. 2.2. The Propeller. 2.3. Propeller Blade Theory. 2.4. Propeller Momentum Theory. 2.5. Off-Axis Forces and Moments Developed by a Propeller. 2.6. Turbojet Engines: The Thrust Equation. 2.7. Turbojet Engines: Cycle Analysis. 2.8. The Turbojet Engine with Afterburner. 2.9. Turbofan Engines. 2.10. Concluding Remarks. 2.11. Problems. 3. Aircraft Performance. 3.1. Introduction. 3.2. Thrust Required. 3.3. Power Required. 3.4. Rate of Climb and Power Available. 3.5. Fuel Consumption and Endurance. 3.6. Fuel Consumption and Range. 3.7. Power Failure and Gliding Flight. 3.8. Airspeed, Wing Loading, and Stall. 3.9. The Steady Coordinated Turn. 3.10. Takeoff and Landing Performance. 3.11. Accelerating Climb and Balanced Field Length. 3.12. Problems. 4. Longitudinal Static Stability and Trim. 4.1. Fundamentals of Static Equilibrium and Stability. 4.2. Pitch Stability of a Cambered Wing. 4.3. Simplified Pitch Stability Analysis for a Wing-Tail Combination. 4.4. Stick-Fixed Neutral Point and Static Margin. 4.5. Estimating the Downwash Angle on an Aft Tail. 4.6. Simplified Pitch Stability Analysis for a Wing-Canard Combination. 4.7. Effects of Drag and Vertical Offset. 4.8. Effects of Nonlinearities on the Aerodynamic Center. 4.9. Effect of the Fuselage, Nacelles, and External Stores. 4.10. Contribution of Running Propellers. 4.11. Contribution of Jet Engines. 4.12. Problems. 5. Lateral Static Stability and Trim. 5.1. Introduction. 5.2. Yaw Stability and Trim. 5.3. Estimating the Sidewash Gradient on a Vertical Tail. 5.4. Estimating the Lift Slope for a Vertical Tail. 5.5. Effects of Tail Dihedral on Yaw Stability. 5.6. Roll Stability and Dihedral Effect. 5.7. Roll Control and Trim Requirements. 5.8. The Generalized Small-Angle Lateral Trim Requirements. 5.9. Steady-Heading Sideslip. 5.10. Engine Failure and Minimum-Control Airspeed. 5.11. Longitudinal-Lateral Coupling. 5.12. Control Surface Sign Conventions. 5.13. Problems. 6. Aircraft Controls and Maneuverability. 6.1. Longitudinal Control and Maneuverability. 6.2. Effects of Structural Flexibility. 6.3. Control Force and Trim Tabs. 6.4. Stick-Free Neutral and Maneuver Points. 6.5. Ground Effect, Elevator Sizing, and CG Limits. 6.6. Stall Recovery. 6.7. Lateral Control and Maneuverability. 6.8. Aileron Reversal. 6.9. Other Control Surface Configurations. 6.10. Airplane Spin. 6.11. Problems. 7. Aircraft Equations of Motion. 7.1. Introduction. 7.2. Newtons Second Law for Rigid-Body Dynamics. 7.3. Position and Orientation: The Euler Angle Formulation. 7.4. Rigid-Body 6-DOF Equations of Motion. 7.5. Linearized Equations of Motion. 7.6. Force and Moment Derivatives. 7.7. Nondimensional Linearized Equations of Motion. 7.8. Transformation of Stability Axes. 7.9. Inertial and Gyroscopic Coupling. 7.10. Problems. 8. Linearized Longitudinal Dynamics. 8.1. Fundamentals of Dynamics: Eigenproblems. 8.2. Longitudinal Motion: The Linearized Coupled Equations. 8.3. Short-Period Approximation. 8.4. Long-Period Approximation. 8.5. Pure Pitching Motion. 8.6. Summary. 8.7. Problems. 9. Linearized Lateral Dynamics. 9.1. Introduction. 9.2. Lateral Motion: The Linearized Coupled Equations. 9.3. Roll Approximation. 9.4. Spiral Approximation. 9.5. Dutch Roll Approximation. 9.6. Pure Rolling Motion. 9.7. Pure Yawing Motion. 9.8. Longitudinal-Lateral Coupling. 9.9. Nonlinear Effects. 9.10. Summary. 9.11. Problems. 10. Aircraft Handling Qualities and Control Response. 10.1. Introduction. 10.2. Pilot Opinion. 10.3. Dynamic Handling Quality Prediction. 10.4. Response to Control Inputs. 10.5. Nonlinear Effects and Longitudinal-Lateral Coupling. 10.6. Problems. 11. Aircraft Flight Simulation. 11.1. Introduction. 11.2. Euler Angle Formulations. 11.3. Direction-Cosine Formulation. 11.4. Euler Axis Formulation. 11.5. The Euler-Rodrigues Quaternion Formulation. 11.6. Quaternion Algebra. 11.7. Relations between the Quaternion and Other Attitude Descriptors. 11.8. Applying Rotational Constraints to the Quaternion Formulation. 11.9. Closed-Form Quaternion Solution for Constant Rotation. 11.10. Numerical Integration of the Quaternion Formulation. 11.11. Summary of the Flat-Earth Quaternion Formulation. 11.12. Aircraft Position in Geographic Coordinates. 11.13. Problems. Bibliography. Appendixes. A Standard Atmosphere, SI Units. B Standard Atmosphere, English Units. C Aircraft Moments of Inertia. Nomenclature. Index.










Altre Informazioni

ISBN:

9780470539750

Condizione: Nuovo
Dimensioni: 241 x 49 x 164 mm Ø 1568 gr
Formato: Copertina rigida
Pagine Arabe: 1152


Dicono di noi