libri scuola books Fumetti ebook dvd top ten sconti 0 Carrello


Torna Indietro

girardin valérie; limnios nikolaos - applied probability

Applied Probability From Random Sequences to Stochastic Processes

;




Disponibilità: Normalmente disponibile in 15 giorni


PREZZO
81,98 €
NICEPRICE
77,88 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Editore:

Springer

Pubblicazione: 09/2018
Edizione: 1st ed. 2018





Trama

This textbook addresses postgraduate students in applied mathematics, probability, and statistics, as well as computer scientists, biologists, physicists and economists, who are seeking a rigorous introduction to applied stochastic processes. Pursuing a pedagogic approach, the content follows a path of increasing complexity, from the simplest random sequences to the advanced stochastic processes. Illustrations are provided from many applied fields, together with connections to ergodic theory, information theory, reliability and insurance. The main content is also complemented by a wealth of examples and exercises with solutions.







Sommario

Notation iii
Preface ix
1 Independent Random Sequences 1
1.1 Denumerable Sequences . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Sequences of Events . . . . . . . . . . . . . . . . . . . . . 7
1.1.2 Independence . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Analytic Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.1 Generating Functions . . . . . . . . . . . . . . . . . . . . 12
1.2.2 Characteristic Functions . . . . . . . . . . . . . . . . . . . 13
1.2.3 Laplace Transforms . . . . . . . . . . . . . . . . . . . . . 15
1.2.4 Moment Generating Functions and Cram´er Transforms . 17
1.2.5 From Entropy to Entropy Rate . . . . . . . . . . . . . . . 19
1.3 Sums and Random Sums . . . . . . . . . . . . . . . . . . . . . . . 23
1.3.1 Sums of Independent Variables . . . . . . . . . . . . . . . 23
1.3.2 Random Sums . . . . . . . . . . . . . . . . . . . . . . . . 27
1.3.3 Random Walks . . . . . . . . . . . . . . . . . . . . . . . . 29
1.4 Convergence of Random Sequences . . . . . . . . . . . . . . . . . 30
1.4.1 Different Types of Convergence . . . . . . . . . . . . . . . 30
1.4.2 Limit Theorems . . . . . . . . . . . . . . . . . . . . . . . 33
1.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2 Conditioning and Martingales 51
2.1 Conditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.1.1 Conditioning with Respect to an Event . . . . . . . . . . 52
2.1.2 Conditional Probabilities . . . . . . . . . . . . . . . . . . 53
2.1.3 Conditional Distributions . . . . . . . . . . . . . . . . . . 56
2.1.4 Conditional Expectation . . . . . . . . . . . . . . . . . . . 57
2.1.5 Conditioning and Independence . . . . . . . . . . . . . . . 63
2.1.6 Practical Determination . . . . . . . . . . . . . . . . . . . 65
2.2 The Linear Model . . . . . . . . . . . . . . . . . . . . . . . . . . 68
2.3 Stopping Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
2.4 Discrete-Time Martingales . . . . . . . . . . . . . . . . . . . . . . 73
2.4.1 Definitions and Properties . . . . . . . . . . . . . . . . . . 73
2.4.2 Classical Inequalities . . . . . . . . . . . . . . . . . . . . . 78
2.4.3 Martingales and Stopping Times . . . . . . . . . . . . . . 81
2.4.4 Convergence of Martingales . . . . . . . . . . . . . . . . . 84
2.4.5 Square Integrable Martingales . . . . . . . . . . . . . . . . 86
2.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3 Markov Chains 99
3.1 General Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.1.1 Transition Functions with Examples . . . . . . . . . . . . 99
3.1.2 Martingales and Markov Chains . . . . . . . . . . . . . . 107
3.1.3 Stopping Times and Markov Chains . . . . . . . . . . . . 109
3.2 Classification of States . . . . . . . . . . . . . . . . . . . . . . . . 111
3.3 Stationary Distribution and Asymptotic Behavior . . . . . . . . . 116
3.4 Periodic Markov chains . . . . . . . . . . . . . . . . . . . . . . . 123
3.5 Finite Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . 127
3.5.1 Specific Properties . . . . . . . . . . . . . . . . . . . . . . 127
3.5.2 Application to Reliability . . . . . . . . . . . . . . . . . . 132
3.6 Branching Processes . . . . . . . . . . . . . . . . . . . . . . . . . 135
3.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
4 Continuous Time Stochastic Processes 153
4.1 General Notions . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
4.2 Stationarity and Ergodicity . . . . . . . . . . . . . . . . . . . . . 160
4.3 Processes with Independent Increments . . . . . . . . . . . . . . 166
4.4 Point Processes on the Line . . . . . . . . . . . . . . . . . . . . . 168
4.4.1 Basics on General Point Processes . . . . . . . . . . . . . 169
4.4.2 Renewal Processes . . . . . . . . . . . . . . . . . . . . . . 171
4.4.3 Poisson Processes . . . . . . . . . . . . . . . . . . . . . . . 175
4.4.4 Asymptotic Results for Renewal Processes . . . . . . . . . 177
4.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
5 Markov and Semi-Markov Processes 189
5.1 Jump Markov Processes . . . . . . . . . . . . . . . . . . . . . . . 189
5.1.1 Markov Processes . . . . . . . . . . . . . . . . . . . . . . . 189
5.1.2 Transition Functions . . . . . . . . . . . . . . . . . . . . . 192
5.1.3 Infinitesimal Generators and Kolmogorov’s Equations . . 195
5.1.4 Embedded Chains and Classification of States . . . . . . . 197
5.1.5 Stationary Distribution and Asymptotic Behavior . . . . 203
5.2 Semi-Markov Processes . . . . . . . . . . . . . . . . . . . . . . . 207
5.2.1 Markov Renewal Processes . . . . . . . . . . . . . . . . . 207
5.2.2 Classification of States and Asymptotic Behavior . . . . . 210
5.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
Further Reading 225





Autore

Valérie Girardin received her Ph.D. in Probability from the Université Paris-Sud in Orsay, France. She teaches analysis, probability and statistics to various levels of students, including future secondary school teachers in mathematics, future engineers and researchers. Her research interests include diverse aspects of stochastic processes, from theory to applied statistics, with a particular interest in information theory and biology.

Nikolaos Limnios graduated from the Aristotle University of Thessaloniki and Polytechnic School of Thesaloniki, Greece. He received his Ph.D. and his Doctorat d’Etat  from the Université de Technologie de Compiègne (UTC), France, where he is now a full professor. He teaches probability,  statistics and stochastic processes to future engineers. His research interests in stochastic processes  and statistics include Markov, semi-Markov processes, branching processes, random evolutions and their applications in biology, reliability, earthquake, population evolutions, among other topics. 

 











Altre Informazioni

ISBN:

9783319974118

Condizione: Nuovo
Dimensioni: 235 x 155 mm Ø 582 gr
Formato: Copertina rigida
Illustration Notes:XIII, 260 p. 30 illus., 1 illus. in color.
Pagine Arabe: 260
Pagine Romane: xiii


Dicono di noi