libri scuola books Fumetti ebook dvd top ten sconti 0 Carrello


Torna Indietro

de greve kristiaan - towards solid-state quantum repeaters
Zoom

Towards Solid-State Quantum Repeaters Ultrafast, Coherent Optical Control and Spin-Photon Entanglement in Charged InAs Quantum Dots




Disponibilità: Normalmente disponibile in 15 giorni


PREZZO
108,98 €
NICEPRICE
103,53 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Editore:

Springer

Pubblicazione: 08/2016
Edizione: Softcover reprint of the original 1st ed. 2013





Trama

Towards Solid-State Quantum Repeaters: Ultrafast, Coherent Optical Control and Spin-Photon Entanglement in Charged InAs Quantum Dots summarizes several state-of-the-art coherent spin manipulation experiments in III-V quantum dots. Both high-fidelity optical manipulation, decoherence due to nuclear spins and the spin coherence extraction are discussed, as is the generation of entanglement between a single spin qubit and a photonic qubit. The experimental results are analyzed and discussed in the context of future quantum technologies, such as quantum repeaters.

Single spins in optically active semiconductor host materials have emerged as leading candidates for quantum information processing (QIP). The quantum nature of the spin allows for encoding of stationary, memory quantum bits (qubits), and the relatively weak interaction with the host material preserves the spin coherence. On the other hand, optically active host materials permit direct interfacing with light, which can be used for all-optical qubit manipulation, and for efficiently mapping matter qubits into photonic qubits that are suited for long-distance quantum communication.





Sommario

Introduction.- Quantum Dot Spin Qubits.- Ultrafast Control of Electron Spins.- Hadamard Gate.- Geometric Phase Gates.- Hole Spin Qubits.- Spin-Photon Entanglement.- Conclusion and Outlook.- A: Fidelity Analysis.- B: Electron Spin-Nuclear Feedback.- C: Heavy-Hole-Light-Hole Mixing.- D: Coherent Hole Rotation Model.- E: Hole Spin Device Design.- F: Visibility of Quantum Erasure.





Autore

Dr. Kristiaan De Greve performed his research at Stanford University, and completed his Ph.D. in 2012. He has published articles in journals including Optics Express, Nature Physics, Physical Review B, Physics Review Letters, Nature Photonics, and Applied Physics Letters. Dr. De Greve is currently Postdoctoral Fellow in the Department of Physics at Harvard University.

Current Affiliation:

Kristiaan De Greve
Department of Physics
Harvard University
Cambridge, MA 02138
USA

Previous Affiliation:

Kristiaan De Greve
Department of Electrical Engineering
Stanford University
Stanford, CA 94305
USA










Altre Informazioni

ISBN:

9783319374963

Condizione: Nuovo
Collana: Springer Theses
Dimensioni: 235 x 155 mm
Formato: Brossura
Illustration Notes:XVII, 148 p. 75 illus., 63 illus. in color.
Pagine Arabe: 148
Pagine Romane: xvii


Dicono di noi