libri scuola books Fumetti ebook dvd top ten sconti 0 Carrello


Torna Indietro
ARGOMENTO:  BOOKS > INFORMATICA > TESTI GENERALI

salerno simone - tiny machine learning quickstart
Zoom

Tiny Machine Learning Quickstart Machine Learning for Arduino Microcontrollers




Disponibilità: Normalmente disponibile in 15 giorni


PREZZO
64,98 €
NICEPRICE
61,73 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Editore:

Apress

Pubblicazione: 04/2025
Edizione: First Edition





Trama

Be a part of the Tiny Machine Learning (TinyML) revolution in the ever-growing world of IoT. This book examines the concepts, workflows, and tools needed to make your projects smarter, all within the Arduino platform.

You’ll start by exploring Machine learning in the context of embedded, resource-constrained devices as opposed to your powerful, gigabyte-RAM computer. You’ll review the unique challenges it poses, but also the limitless possibilities it opens. Next, you’ll work through nine projects that encompass different data types (tabular, time series, audio and images) and tasks (classification and regression). Each project comes with tips and tricks to collect, load, plot and analyse each type of data.

Throughout the book, you’ll apply three different approaches to TinyML: traditional algorithms (Decision Tree, Logistic Regression, SVM), Edge Impulse (a no-code online tools), and TensorFlow for Microcontrollers. Each has its strengths and weaknesses, and you will learn how to choose the most appropriate for your use case. TinyML Quickstart will provide a solid reference for all your future projects with minimal cost and effort.

What You Will Learn

  • Navigate embedded ML challenges
  • Integrate Python with Arduino for seamless data processing
  • Implement ML algorithms
  • Harness the power of Tensorflow for artificial neural networks
  • Leverage no-code tools like Edge Impulse
  • Execute real-world projects

Who This Book Is For

Electronics hobbyists and developers with a basic understanding of Tensorflow, ML in Python, and Arduino-based programming looking to apply that knowledge with microcontrollers. Previous experience with C++ is helpful but not required.





Sommario

Chapter 1: Introduction to Tiny Machine Learning.- Chapter 2: Tabular data classification.- Chapter 3: Tabular data regression.-  Chapter 4: Time series classification with Edge Impulse.- Chapter 5: Time series classification without Edge Impulse.- Chapter 6: Audio Wake Word detection with Edge Impulse.- Chapter 7: Object detection with Edge Impulse.- Chapter 8: TensorFlow for Microcontrollers from scratch.





Autore

Simone Salerno has been tinkering with microcontrollers for nearly 10 years and is committed to bringing his knowledge of software engineering to the world of Arduino programming. With the advent of Tensorflow for Microcontrollers he began developing leaner, faster alternatives to neural networks for microcontrollers and started porting many traditional ML algorithms such as Decision Tree, Random Forest, and Logistic Regression from Python to self-contained, hardware-independent C++, ready to be deployed to any microcontroller. Today, he continues to focus on the development of TinyML tools and tutorials with his low-code libraries and no-code online platforms like Edge Impulse.











Altre Informazioni

ISBN:

9798868812934

Condizione: Nuovo
Collana: Maker Innovations Series
Dimensioni: 235 x 155 mm
Formato: Brossura
Illustration Notes:XX, 326 p. 105 illus.
Pagine Arabe: 326
Pagine Romane: xx


Dicono di noi





Per noi la tua privacy è importante


Il sito utilizza cookie ed altri strumenti di tracciamento che raccolgono informazioni dal dispositivo dell’utente. Oltre ai cookie tecnici ed analitici aggregati, strettamente necessari per il funzionamento di questo sito web, previo consenso dell’utente possono essere installati cookie di profilazione e marketing e cookie dei social media. Cliccando su “Accetto tutti i cookie” saranno attivate tutte le categorie di cookie. Per accettare solo deterninate categorie di cookie, cliccare invece su “Impostazioni cookie”. Chiudendo il banner o continuando a navigare saranno installati solo cookie tecnici. Per maggiori dettagli, consultare la Cookie Policy.

Impostazioni cookie
Rifiuta Tutti i cookie
Accetto tutti i cookie
X