libri scuola books Fumetti ebook dvd top ten sconti 0 Carrello


Torna Indietro
ARGOMENTO:  BOOKS > BIOLOGIA > BIOLOGIA > NEUROBIOLOGIA

rao a. ravishankar (curatore); cecchi guillermo a. (curatore) - the relevance of the time domain to neural network models
Zoom

The Relevance of the Time Domain to Neural Network Models

;




Disponibilità: Normalmente disponibile in 15 giorni
A causa di problematiche nell'approvvigionamento legate alla Brexit sono possibili ritardi nelle consegne.


PREZZO
162,98 €
NICEPRICE
154,83 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Editore:

Springer

Pubblicazione: 10/2013
Edizione: 2012





Trama

A significant amount of effort in neural modeling is directed towards understanding the representation of information in various parts of the brain, such as cortical maps [6], and the paths along which sensory information is processed. Though the time domain is integral an integral aspect of the functioning of biological systems, it has proven very challenging to incorporate the time domain effectively in neural network models. A promising path that is being explored is to study the importance of synchronization in biological systems. Synchronization plays a critical role in the interactions between neurons in the brain, giving rise to perceptual phenomena, and explaining multiple effects such as visual contour integration, and the separation of superposed inputs.

The purpose of this book is to provide a unified view of how the time domain can be effectively employed in neural network models. A first direction to consider is to deploy oscillators that model temporal firing patterns of a neuron or a group of neurons. There is a growing body of research on the use of oscillatory neural networks, and their ability to synchronize under the right conditions. Such networks of synchronizing elements have been shown to be effective in image processing and segmentation tasks, and also in solving the binding problem, which is of great significance in the field of neuroscience. The oscillatory neural models can be employed at multiple scales of abstraction, ranging from individual neurons, to groups of neurons using Wilson-Cowan modeling techniques and eventually to the behavior of entire brain regions as revealed in oscillations observed in EEG recordings. A second interesting direction to consider is to understand the effect of different neural network topologies on their ability to create the desired synchronization. A third direction of interest is the extraction of temporal signaling patterns from brain imaging data such as EEG and fMRI. Hence this Special Session is of emerging interest in the brain sciences, as imaging techniques are able to resolve sufficient temporal detail to provide an insight into how the time domain is deployed in cognitive function.

The following broad topics will be covered in the book: Synchronization, phase-locking behavior, image processing, image segmentation, temporal pattern analysis, EEG analysis, fMRI analyis, network topology and synchronizability, cortical interactions involving synchronization, and oscillatory neural networks.

This book will benefit readers interested in the topics of computational neuroscience, applying neural network models to understand brain function, extracting temporal information from brain imaging data, and emerging techniques for image segmentation using oscillatory networks





Sommario

Acknowledgements Foreword.-  1. Introduction.-  2. Adaptation and contraction theory for the synchronization of complex neural networks.-  3. Temporal Coding is not only about Cooperation - it is also about Competition.-  4. Using Non-Oscillatory Dynamics to Disambiguate Simultaneous Patterns.-  5. Functional constraints on network topology via generalized sparse representations.-  6. Evolution of Time in Neural Networks: From the Present to the Past, and Forward to the Future.-  7. Synchronization of Coupled Pulse-Type Hardware Neuron Models for CPG Model.-  8. A Universal Abstract-Time Platform for Real-Time Neural Networks.-  9. Solving Complex Control Tasks via Simple Rule(s): Using Chaotic Dynamics in a Recurrent Neural Network Model.-  10. Time scale analysis of neuronal ensemble data used to feed neural network models.-  11. Simultaneous EEG-fMRI: Integrating Spatial and Temporal Resolution.










Altre Informazioni

ISBN:

9781461429920

Condizione: Nuovo
Collana: Springer Series in Cognitive and Neural Systems
Dimensioni: 235 x 155 mm
Formato: Brossura
Illustration Notes:XVIII, 226 p.
Pagine Arabe: 226
Pagine Romane: xviii


Dicono di noi





Per noi la tua privacy è importante


Il sito utilizza cookie ed altri strumenti di tracciamento che raccolgono informazioni dal dispositivo dell’utente. Oltre ai cookie tecnici ed analitici aggregati, strettamente necessari per il funzionamento di questo sito web, previo consenso dell’utente possono essere installati cookie di profilazione e marketing e cookie dei social media. Cliccando su “Accetto tutti i cookie” saranno attivate tutte le categorie di cookie. Per accettare solo deterninate categorie di cookie, cliccare invece su “Impostazioni cookie”. Chiudendo il banner o continuando a navigare saranno installati solo cookie tecnici. Per maggiori dettagli, consultare la Cookie Policy.

Impostazioni cookie
Rifiuta Tutti i cookie
Accetto tutti i cookie
X