libri scuola books Fumetti ebook dvd top ten sconti 0 Carrello


Torna Indietro
ARGOMENTO:  BOOKS > SCIENZA E TECNICA > FISICA

razeghi manijeh - the mocvd challenge
Zoom

The MOCVD Challenge Volume 2: A Survey of GaInAsP-GaAs for Photonic and Electronic Device Applications




Disponibilità: Normalmente disponibile in 20 giorni
A causa di problematiche nell'approvvigionamento legate alla Brexit sono possibili ritardi nelle consegne.


PREZZO
422,98 €
NICEPRICE
401,83 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con Carta della cultura giovani e del merito, Carta della Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Pubblicazione: 01/1995
Edizione: 1° edizione





Trama

Coverage ranges from an introduction to III-V compounds and devices, growth techniques for multilayers and heterostructures; an MOCVD system, how it works, how design affects material growth and sourcing of precursor materials; Iin- and Iex-situ growth techniques, with the differential reflectivity treatment, a key feature, applied to lattice matched and mis-matched conditions; specific, in depth treatment of the GaInPGaAs system, including optical investigations of quantum wells and superlattices; and closes with an up-to-date discussion of current use, novel developments and future potential for optical devices, GaAs based lasers and heterojunctions, and optoelectronic integrated circuits. Professor Razeghi is Director of the Centre for Quantum Devices at Northwestern University, and leads an internationally renowned team research into the use of the MOCVD growth technique. Formerly head of research at Thomson-CSF in France, she was awarded the IBM Europe Science and Technology Prize for her early research into MOCVD.




Note Editore

The MOCVD Challenge: Volume 2, A Survey of GaInAsP-GaAs for Photonic and Electronic Device Applications focuses on GaAs systems and devices grown by MOCVD, specifically MOCVD growth of GaAs and related alloys and GaInP for photonic and electronic applications. Along with Volume 1, this book provides a personal account of the author's own pioneering research, an authoritative overview of the development of the MOCVD technique, and the technique's impact on the development of new materials, devices, and their applications.Coverage begins with an introduction to III-V compounds and devices and growth techniques for multilayers and heterostructures. The book then details how an MOCVD system works and how design affects material growth and sourcing of precursor materials. It also examines ^Iin- and ^Iex-situ growth techniques, with the differential reflectivity treatment applied to lattice matched and mis-matched conditions. The author gives an in-depth treatment of the GaInPGaAs system, including optical investigations of quantum wells and superlattices. The book concludes with an up-to-date discussion of the current use, novel developments, and future potential for optical devices, GaAs-based lasers and heterojunctions, and optoelectronic integrated circuits.The MOCVD Challenge is an invaluable introduction and guide for researchers in materials science, applied physics, and electrical engineering, who study the properties and applications of compound (III-V) semiconductor materials.Professor Manijeh Razeghi is director of the Center for Quantum Devices at Northwestern University and leads an internationally renowned research team exploring the use of the MOCVD growth technique. Formerly head of research at Thomson-CSF in France, she was awarded the IBM Europe Science and Technology Prize for her early research into MOCVD.




Sommario

Preface. Foreword. Introduction. Introduction to semiconductor compounds: III-V semiconductor alloys; III-V semiconductor devices; Technology of multilayer growth; References. MOCVD growth technique: MOCVD growth systems; The MOCVD growth mechanism and growth process; Gas flow patterns and reactor design; MOCVD starting materials; Low-pressure MOCVD and MOMBE; References. ^IIn-situ^N characterization during MOCVD: Introduction; Reflectance anisotropy and ellipsometry; Optimization of the growth of III-V binaries by RDS; RDS investigation of III-V lattice-matched heterojunctions; RDS investigation of III-V lattice-mismatched structures; Insights on the growth process; References. ^IEx-situ^N characterization techniques: Chemical bevel revelation; Deep-level transient spectroscopy; X-ray diffraction; Photoluminescence; Electrochemical capacitance-voltage and photovoltage spectroscopy; Resistivity and Hall measurement; Thickness measurement; References. MOCVD growth of GaAs layers: Introduction; GaAs and related compounds band structure; MOCVD growth mechanism of GaAs and related compounds; Experimental details; Incorporation of impurities in GaAs grown by MOCVD; References. Growth and characterization of the GaInP-GaAs system: Introduction; Growth details; Structural order in Ga^OxIn^O1-xP alloys grown by MOCVD; Defects in GaInP layers grown by MOCVD; Doping behaviour of GaInP; GaAs-GaInP heterostructures; Growth and characterization of GaInP-GaAs multilayers by MOCVD; Optical and structural investigations of GaAs-GaInP quantum wells and superlattices grown by MOCVD. Characterization of GaAs-GaInP quantum wells by Auger analysis on chemical bevels; Evaluation of the band offsets of GaAs/GaInP multilayers by electroreflectance (Razeghi ^Iet al^N 1992); Intersubband hole absorption in GaAs-GaInP quantum wells; References. Optical Devices: Electro-optical Modulators; GaAs-based infrared photodetectors grown by MOCVD; Solar cells and GaAs solar cells; References. GaAs-based lasers: Introduction; Basic physical concepts; Laser structures; New GaAs-based materials for lasers; References. GaAs- based heterojunction electron devices grown by MOCVD: Introduction; Heterostructure field-effect transistors (HFETs); Heterojunction bipolar transistors (HBTs); References. Optoelectronic integrated circuits (OEICs): Introduction; Material considerations; OEICs on Si substrate; The role of optoelectronic integration in computing; Examples of optoelectronic integration by MOCVD; References. Appendices. Effect of substrate miscut on the measured superlattice period. Optimization of thickness and In composition of InGaAs well for 980 nm lasers: References. Energy levels and laser gains in a quantum well (GaInAsP): the `effective mass approximation'. Luttinger-Kohn Hamiltonian: ^Ik . p^N theory; Luttinger-Kohn Hamiltonian; References. Infrared detectors: Classification; General theory of photodetectors; References. Index.










Altre Informazioni

ISBN:

9780750303095

Condizione: Nuovo
Dimensioni: 9.25 x 6.25 in Ø 2.00 lb
Formato: Copertina rigida
Pagine Arabe: 444


Dicono di noi