libri scuola books Fumetti ebook dvd top ten sconti 0 Carrello


Torna Indietro

hastie trevor; tibshirani robert; friedman jerome - the elements of statistical learning
Zoom

The Elements of Statistical Learning Data Mining, Inference, and Prediction, Second Edition

; ;




Disponibilità: Normalmente disponibile in 15 giorni
A causa di problematiche nell'approvvigionamento legate alla Brexit sono possibili ritardi nelle consegne.


PREZZO
81,98 €
NICEPRICE
77,88 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Editore:

Springer

Pubblicazione: 02/2009
Edizione: Second Edition 2009





Trama

This book describes the important ideas in a variety of fields such as medicine, biology, finance, and marketing in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of colour graphics. It is a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting---the first comprehensive treatment of this topic in any book.

This major new edition features many topics not covered in the original, including graphical models, random forests, ensemble methods, least angle regression & path algorithms for the lasso, non-negative matrix factorisation, and spectral clustering. There is also a chapter on methods for "wide'' data (p bigger than n), including multiple testing and false discovery rates.





Sommario

Overview of Supervised Learning.- Linear Methods for Regression.- Linear Methods for Classification.- Basis Expansions and Regularization.- Kernel Smoothing Methods.- Model Assessment and Selection.- Model Inference and Averaging.- Additive Models, Trees, and Related Methods.- Boosting and Additive Trees.- Neural Networks.- Support Vector Machines and Flexible Discriminants.- Prototype Methods and Nearest-Neighbors.- Unsupervised Learning.- Random Forests.- Ensemble Learning.- Undirected Graphical Models.- High-Dimensional Problems: p ? N.




Autore

Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie co-developed much of the statistical modeling software and environment in R/S-PLUS and invented principal curves and surfaces. Tibshirani proposed the lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, projection pursuit and gradient boosting.











Altre Informazioni

ISBN:

9780387848570

Condizione: Nuovo
Collana: Springer Series in Statistics
Dimensioni: 235 x 155 mm
Formato: Copertina rigida
Illustration Notes:XXII, 745 p. 658 illus., 604 illus. in color.
Pagine Arabe: 745
Pagine Romane: xxii


Dicono di noi





Per noi la tua privacy è importante


Il sito utilizza cookie ed altri strumenti di tracciamento che raccolgono informazioni dal dispositivo dell’utente. Oltre ai cookie tecnici ed analitici aggregati, strettamente necessari per il funzionamento di questo sito web, previo consenso dell’utente possono essere installati cookie di profilazione e marketing e cookie dei social media. Cliccando su “Accetto tutti i cookie” saranno attivate tutte le categorie di cookie. Per accettare solo deterninate categorie di cookie, cliccare invece su “Impostazioni cookie”. Chiudendo il banner o continuando a navigare saranno installati solo cookie tecnici. Per maggiori dettagli, consultare la Cookie Policy.

Impostazioni cookie
Rifiuta Tutti i cookie
Accetto tutti i cookie
X