home libri books Fumetti ebook dvd top ten sconti 0 Carrello


Torna Indietro

wang xinwei; liu jie; peng haijun - symplectic pseudospectral methods for optimal control

Symplectic Pseudospectral Methods for Optimal Control Theory and Applications in Path Planning

; ;




Disponibilità: Normalmente disponibile in 15 giorni


PREZZO
162,98 €
NICEPRICE
154,83 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Editore:

Springer

Pubblicazione: 10/2020
Edizione: 1st ed. 2021





Trama

The book focuses on symplectic pseudospectral methods for nonlinear optimal control problems and their applications. Both the fundamental principles and engineering practice are addressed. Symplectic pseudospectral methods for nonlinear optimal control problems with complicated factors (i.e., inequality constraints, state-delay, unspecific terminal time, etc.) are solved under the framework of indirect methods. The methods developed here offer a high degree of computational efficiency and accuracy when compared with popular direct pseudospectral methods. The methods are applied to solve optimal control problems arising in various engineering fields, particularly in path planning problems for autonomous vehicles. Given its scope, the book will benefit researchers, engineers and graduate students in the fields of automatic control, path planning, ordinary differential equations, etc. 





Sommario

Background.- Numerical methods for computational optimal control.- Mathematical foundations.- SPM for general nonlinear unconstrained optimal control problems.- SPM for nonlinear optimal control problems with inequality constraints.- SPM for nonlinear state-delayed optimal control problems.- From open-loop to closed-loop: Model predictive control.- Optimal maneuver of spacecraft.- Optimal path planning of UGS.- Overhead crane.- Carrier aircraft (traction system).- Optimal vaccination strategy for a seasonally varying epidemic model.




Autore

Xinwei Wang was born in Dalian, China. He received the Ph.D. degree in computational mechanics from Dalian University of Technology, Dalian, China, in 2019. He is currently a Postdoc with the Department of Engineering Mechanics and Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, China. His research interests cover computational optimal control and path planning for autonomous vehicles. He has authored or co-authored over 10 publications in journals. 

Jie Liu was born in Huanggang, China. He received the Ph.D. degree in aerospace science and technology from Naval Aeronautical University, Yantai, China, in 2019. He is currently working in Academy of Military Sciences, Beijing, China. His research interests cover the control of Unmanned Ground Systems, path planning for robots, and optimal control, as well as related fields such as the process industry control and automation. He has authored or co-authored over 10 publications in journals.

Haijun Peng was born in Handan, China. He received the Ph.D. degree in dynamics and control from Dalian University of Technology, Dalian, China, in 2012. He is currently a Professor with the Department of Engineering Mechanics, and fixed personnel in State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian, China. His research interests cover the optimal control, multibody dynamics, and robot system. He has authored or co-authored over 50 publications in journals, and received one best paper award.










Altre Informazioni

ISBN:

9789811534379

Condizione: Nuovo
Collana: Intelligent Systems, Control and Automation: Science and Engineering
Dimensioni: 235 x 155 mm Ø 459 gr
Formato: Copertina rigida
Illustration Notes:XI, 178 p. 109 illus., 98 illus. in color.
Pagine Arabe: 178
Pagine Romane: xi


Dicono di noi