libri scuola books Fumetti ebook dvd top ten sconti 0 Carrello


Torna Indietro

samoradnitsky gennady; taqqu m.s. - stable non-gaussian random processes
Zoom

Stable Non-Gaussian Random Processes Stochastic Models with Infinite Variance

;




Disponibilità: Normalmente disponibile in 20 giorni
A causa di problematiche nell'approvvigionamento legate alla Brexit sono possibili ritardi nelle consegne.


PREZZO
208,98 €
NICEPRICE
198,53 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Pubblicazione: 06/1994
Edizione: 1° edizione





Trama

The familiar Gaussian models do not allow for large deviations and are thus often inadequate for modeling high variability. Non-Gaussian stable models do not possess such limitations. They all share a familiar feature which differentiates them from the Gaussian ones. Their marginal distributions possess heavy "probability tails", always with infinite variance and in some cases with infinite first moment. The aim of this book is to make this exciting material easily accessible to graduate students and practitioners. Assuming only a first-year graduate course in probability, it includes material which has appeared only recently in journals and unpublished materials. Each chapter begins with a brief overview and concludes with a range of exercises at varying levels of difficulty. Proofs are spelled out in detail. The book includes a discussion of self-similar processes, ARMA, and fractional ARIMA time series with stable innovations.




Note Editore

This book presents similarity between Gaussian and non-Gaussian stable multivariate distributions and introduces the one-dimensional stable random variables. It discusses the most basic sample path properties of stable processes, namely sample boundedness and continuity.




Sommario

1. Stable random variables on the real line 2. Multivariate stable distributions 3. Stable random processes and stochastic integrals 4. Dependence Structures of Multivariate Stable Distributions 5. Non-linear regression 6. Complex stable stochastic integrals and harmonizable processes 7. Self-similar processes 8. Chentsov random fields 9. Introduction to sample path properties 10. Boundedness, continuity and oscillations 11. Measurability, integrability and absolute continuity 12. Boundedness and continuity via metric entropy 13. Integral representation 14. Historical notes and extensions










Altre Informazioni

ISBN:

9780412051715

Condizione: Nuovo
Collana: Stochastic Modeling Series
Dimensioni: 9.25 x 6.25 in Ø 2.30 lb
Formato: Copertina rigida
Pagine Arabe: 632


Dicono di noi