libri scuola books Fumetti ebook dvd top ten sconti 0 Carrello


Torna Indietro

xiao zhiqing - reinforcement learning
Zoom

Reinforcement Learning Theory and Python Implementation




Disponibilità: Normalmente disponibile in 15 giorni


PREZZO
81,98 €
NICEPRICE
77,88 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Editore:

Springer

Pubblicazione: 09/2024





Trama

Reinforcement Learning: Theory and Python Implementation is a tutorial book on reinforcement learning, with explanations of both theory and applications. Starting from a uniform mathematical framework, this book derives the theory of modern reinforcement learning systematically and introduces all mainstream reinforcement learning algorithms such as PPO, SAC, and MuZero. It also covers key technologies of GPT training such as RLHF, IRL, and PbRL. Every chapter is accompanied by high-quality implementations, and all implementations of deep reinforcement learning algorithms are with both TensorFlow and PyTorch. Codes can be found on GitHub along with their results and are runnable on a conventional laptop with either Windows, macOS, or Linux.

This book is intended for readers who want to learn reinforcement learning systematically and apply reinforcement learning to practical applications. It is also ideal to academical researchers who seek theoretical foundation or algorithm enhancement in their cutting-edge AI research.





Sommario

Chapter 1. Introduction of Reinforcement Learning (RL).- Chapter 2. MDP: Markov Decision Process.- Chapter 3. Model-based Numerical Iteration.- Chapter 4. MC: Monte Carlo Learning.- Chapter 5. TD: Temporal Difference Learning.- Chapter 6. Function Approximation.- Chapter 7. PG: Policy Gradient.- Chapter 8. AC: Actor–Critic.- Chapter 9. DPG: Deterministic Policy Gradient.- Chapter 10. Maximum-Entropy RL.- Chapter 11. Policy-based Gradient-Free Algorithms.- Chapter 12. Distributional RL.- Chapter 13. Minimize Regret.- Chapter 14. Tree Search.- Chapter 15. More Agent–Environment Interfaces.- Chapter 16. Learn from Feedback and Imitation Learning.





Autore

Zhiqing Xiao obtained doctoral degree from Tsinghua University in 2016 and has more than 15 years in academic research and industrial practices on data-analytics and AI. He is the author of two AI bestsellers in Chinese: “Reinforcement Learning” and “Application of Neural Network and PyTorch” and published many academic papers. He also contributed to recent versions of the open-source software Gym.












Altre Informazioni

ISBN:

9789811949326

Condizione: Nuovo
Dimensioni: 235 x 155 mm
Formato: Copertina rigida
Illustration Notes:XXII, 559 p. 61 illus., 60 illus. in color.
Pagine Arabe: 559
Pagine Romane: xxii


Dicono di noi