libri scuola books Fumetti ebook dvd top ten sconti 0 Carrello


Torna Indietro

coletti giulianella; scozzafava r. - probabilistic logic in a coherent setting
Zoom

Probabilistic Logic in a Coherent Setting

;




Disponibilità: Normalmente disponibile in 15 giorni
A causa di problematiche nell'approvvigionamento legate alla Brexit sono possibili ritardi nelle consegne.


PREZZO
118,98 €
NICEPRICE
113,03 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Editore:

Springer

Pubblicazione: 10/2002
Edizione: Softcover reprint of the original 1st ed. 2002





Trama

The approach to probability theory followed in this book (which differs radically from the usual one, based on a measure-theoretic framework) characterizes probability as a linear operator rather than as a measure, and is based on the concept of coherence, which can be framed in the most general view of conditional probability. It is a `flexible' and unifying tool suited for handling, e.g., partial probability assessments (not requiring that the set of all possible `outcomes' be endowed with a previously given algebraic structure, such as a Boolean algebra), and conditional independence, in a way that avoids all the inconsistencies related to logical dependence (so that a theory referring to graphical models more general than those usually considered in bayesian networks can be derived). Moreover, it is possible to encompass other approaches to uncertain reasoning, such as fuzziness, possibility functions, and default reasoning.
The book is kept self-contained, provided the reader is familiar with the elementary aspects of propositional calculus, linear algebra, and analysis.




Sommario

1 Introduction.- 1.1 Aims and motivation.- 1.2 A brief historical perspective.- 2 Events as Propositions.- 2.1 Basic concepts.- 2.2 From “belief” to logic?.- 2.3 Operations.- 2.4 Atoms (or “possible worlds”).- 2.5 Toward probability.- 3 Finitely Additive Probability.- 3.1 Axioms.- 3.2 Sets (of events) without structure.- 3.3 Null probabilities.- 4 Coherent probability.- 4.1 Coherence.- 4.2 Null probabilities (again).- 5 Betting Interpretation of Coherence.- 6 Coherent Extensions of Probability Assessments.- 6.1 de Finetti's fundamental theorem.- 6.2 Probabilistic logic and inference.- 7 Random Quantities.- 8 Probability Meaning and Assessment: a Reconciliation.- 8.1 The “subjective” view.- 8.2 Methods of evaluation.- 9 To Be or not To Be Compositional?.- 10 Conditional Events.- 10.1 Truth values.- 10.2 Operations.- 10.3 Toward conditional probability.- 11 Coherent Conditional Probability.- 11.1 Axioms.- 11.2 Assumed or acquired conditioning?.- 11.3 Coherence.- 11.4 Characterization of a coherent conditional probability.- 11.5 Related results.- 11.6 The role of probabilities 0 and 1.- 12 Zero-Layers.- 12.1 Zero-layers induced by a coherent conditional probability.- 12.2 Spohn's ranking function.- 12.3 Discussion.- 13 Coherent Extensions of Conditional Probability.- 14 Exploiting Zero Probabilities.- 14.1 The algorithm.- 14.2 Locally strong coherence.- 15 Lower and Upper Conditional Probabilities.- 15.1 Coherence intervals.- 15.2 Lower conditional probability.- 15.3 Dempster's theory.- 16 Inference.- 16.1 The general problem.- 16.2 The procedure at work.- 16.3 Discussion.- 16.4 Updating probabilities 0 and 1.- 17 Stochastic Independence in a Coherent Setting.- 17.1 “Precise” probabilities.- 17.2 “Imprecise” probabilities.- 17.3 Discussion.- 17.4Concluding remarks.- 18 A Random Walk in the Midst of Paradigmatic Examples.- 18.1 Finite additivity.- 18.2 Stochastic independence.- 18.3 A not coherent “Radon-Nikodym” conditional probability.- 18.4 A changing “world”.- 18.5 Frequency vs. probability.- 18.6 Acquired or assumed (again).- 18.7 Choosing the conditioning event.- 18.8 Simpson’s paradox.- 18.9 Belief functions.- 19 Fuzzy Sets and Possibility as Coherent Conditional Probabilities.- 19.1 Fuzzy sets: main definitions.- 19.2 Fuzziness and uncertainty.- 19.3 Fuzzy subsets and coherent conditional probability.- 19.4 Possibility functions and coherent conditional probability.- 19.5 Concluding remarks.- 20 Coherent Conditional Probability and Default Reasoning.- 20.1 Default logic through conditional probability equal to 1.- 20.2 Inferential rules.- 20.3 Discussion.- 21 A Short Account of Decomposable Measures of Uncertainty.- 21.1 Operations with conditional events.- 21.2 Decomposable measures.- 21.3 Weakly decomposable measures.- 21.4 Concluding remarks.










Altre Informazioni

ISBN:

9781402009709

Condizione: Nuovo
Collana: Trends in Logic
Dimensioni: 240 x 160 mm
Formato: Brossura
Illustration Notes:IV, 291 p.
Pagine Arabe: 291
Pagine Romane: iv


Dicono di noi





Per noi la tua privacy è importante


Il sito utilizza cookie ed altri strumenti di tracciamento che raccolgono informazioni dal dispositivo dell’utente. Oltre ai cookie tecnici ed analitici aggregati, strettamente necessari per il funzionamento di questo sito web, previo consenso dell’utente possono essere installati cookie di profilazione e marketing e cookie dei social media. Cliccando su “Accetto tutti i cookie” saranno attivate tutte le categorie di cookie. Per accettare solo deterninate categorie di cookie, cliccare invece su “Impostazioni cookie”. Chiudendo il banner o continuando a navigare saranno installati solo cookie tecnici. Per maggiori dettagli, consultare la Cookie Policy.

Impostazioni cookie
Rifiuta Tutti i cookie
Accetto tutti i cookie
X