libri scuola books Fumetti ebook dvd top ten sconti 0 Carrello


Torna Indietro

sucar luis enrique - probabilistic graphical models
Zoom

Probabilistic Graphical Models Principles and Applications




Disponibilità: Normalmente disponibile in 15 giorni
A causa di problematiche nell'approvvigionamento legate alla Brexit sono possibili ritardi nelle consegne.


PREZZO
50,98 €
NICEPRICE
48,43 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Editore:

Springer

Pubblicazione: 10/2016
Edizione: Softcover reprint of the original 1st ed. 2015





Trama

This accessible text/reference provides a general introduction to probabilistic graphical models (PGMs) from an engineering perspective. The book covers the fundamentals for each of the main classes of PGMs, including representation, inference and learning principles, and reviews real-world applications for each type of model. These applications are drawn from a broad range of disciplines, highlighting the many uses of Bayesian classifiers, hidden Markov models, Bayesian networks, dynamic and temporal Bayesian networks, Markov random fields, influence diagrams, and Markov decision processes. Features: presents a unified framework encompassing all of the main classes of PGMs; describes the practical application of the different techniques; examines the latest developments in the field, covering multidimensional Bayesian classifiers, relational graphical models and causal models; provides exercises, suggestions for further reading, and ideas for research or programming projects at the end of each chapter.




Sommario

Part I: Fundamentals.- Introduction.- Probability Theory.- Graph Theory.- Part II: Probabilistic Models.- Bayesian Classifiers.- Hidden Markov Models.- Markov Random Fields.- Bayesian Networks: Representation and Inference.- Bayesian Networks: Learning.- Dynamic and Temporal Bayesian Networks.- Part III: Decision Models.- Decision Graphs.- Markov Decision Processes.- Part IV: Relational and Causal Models.- Relational Probabilistic Graphical Models.- Graphical Causal Models.











Altre Informazioni

ISBN:

9781447170549

Condizione: Nuovo
Collana: Advances in Computer Vision and Pattern Recognition
Dimensioni: 235 x 155 mm
Formato: Brossura
Illustration Notes:XXIV, 253 p. 117 illus., 4 illus. in color.
Pagine Arabe: 253
Pagine Romane: xxiv


Dicono di noi