libri scuola books Fumetti ebook dvd top ten sconti 0 Carrello


Torna Indietro

kato tosio - perturbation theory for linear operators
Zoom

Perturbation Theory for Linear Operators




Disponibilità: Normalmente disponibile in 15 giorni


PREZZO
59,98 €
NICEPRICE
56,98 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Editore:

Springer

Pubblicazione: 02/1995
Edizione: 2nd ed. 1995





Trama

In view of recent development in perturbation theory, supplementary notes and a supplementary bibliography are added at the end of the new edition. Little change has been made in the text except that the para­ graphs V-§ 4.5, VI-§ 4.3, and VIII-§ 1.4 have been completely rewritten, and a number of minor errors, mostly typographical, have been corrected. The author would like to thank many readers who brought the errors to his attention. Due to these changes, some theorems, lemmas, and formulas of the first edition are missing from the new edition while new ones are added. The new ones have numbers different from those attached to the old ones which they may have replaced. Despite considerable expansion, the bibliography i" not intended to be complete. Berkeley, April 1976 TosIO RATO Preface to the First Edition This book is intended to give a systematic presentation of perturba­ tion theory for linear operators. It is hoped that the book will be useful to students as well as to mature scientists, both in mathematics and in the physical sciences.




Sommario

One Operator theory in finite-dimensional vector spaces.- § 1. Vector spaces and normed vector spaces.- 1. Basic notions.- 2. Bases.- 3. Linear manifolds.- 4. Convergence and norms.- 5. Topological notions in a normed space.- 6. Infinite series of vectors.- 7. Vector-valued functions.- § 2. Linear forms and the adjoint space.- 1. Linear forms.- 2. The adjoint space.- 3. The adjoint basis.- 4. The adjoint space of a normed space.- 5. The convexity of balls.- 6. The second adjoint space.- § 3. Linear operators.- 1. Definitions. Matrix representations.- 2. Linear operations on operators.- 3. The algebra of linear operators.- 4. Projections. Nilpotents.- 5. Invariance. Decomposition.- 6. The adjoint operator.- § 4. Analysis with operators.- 1. Convergence and norms for operators.- 2. The norm of Tn.- 3. Examples of norms.- 4. Infinite series of operators.- 5. Operator-valued functions.- 6. Pairs of projections.- § 5. The eigenvalue problem.- 1. Definitions.- 2. The resolvent.- 3. Singularities of the resolvent.- 4. The canonical form of an operator.- 5. The adjoint problem.- 6. Functions of an operator.- 7. Similarity transformations.- § 6. Operators in unitary spaces.- 1. Unitary spaces.- 2. The adjoint space.- 3. Orthonormal families.- 4. Linear operators.- 5. Symmetric forms and symmetric operators.- 6. Unitary, isometric and normal operators.- 7. Projections.- 8. Pairs of projections.- 9. The eigenvalue problem.- 10. The minimax principle.- Two Perturbation theory in a finite-dimensional space.- § 1. Analytic perturbation of eigenvalues.- 1. The problem.- 2. Singularities of the eigenvalues.- 3. Perturbation of the resolvent.- 4. Perturbation of the eigenprojections.- 5. Singularities of the eigenprojections.- 6. Remarks and examples.- 7. The case of T(x) linear in x.- 8. Summary.- § 2. Perturbation series.- 1. The total projection for the ?-group.- 2. The weighted mean of eigenvalues.- 3. The reduction process.- 4. Formulas for higher approximations.- 5. A theorem of Motzkin-Taussky.- 6. The ranks of the coefficients of the perturbation series.- § 3. Convergence radii and error estimates.- 1. Simple estimates.- 2. The method of majorizing series.- 3. Estimates on eigenvectors.- 4. Further error estimates.- 5. The special case of a normal unperturbed operator.- 6. The enumerative method.- § . Similarity transformations of the eigenspaces and eigenvectors.- 1. Eigenvectors.- 2. Transformation functions.- 3. Solution of the differential equation.- 4. The transformation function and the reduction process.- 5. Simultaneous transformation for several projections.- 6. Diagonalization of a holomorphic matrix function.- § 5. Non-analytic perturbations.- 1. Continuity of the eigenvalues and the total projection.- 2. The numbering of the eigenvalues.- 3. Continuity of the eigenspaces and eigenvectors.- 4. Differentiability at a point.- 5. Differentiability in an interval.- 6. Asymptotic expansion of the eigenvalues and eigenvectors.- 7. Operators depending on several parameters.- 8. The eigenvalues as functions of the operator.- § 6. Perturbation of symmetric operators.- 1. Analytic perturbation of symmetric operators.- 2. Orthonormal families of eigenvectors.- 3. Continuity and differentiability.- 4. The eigenvalues as functions of the symmetric operator.- 5. Applications. A theorem of Lidskii.- Three Introduction to the theory of operators in Banach spaces.- § 1. Banach spaces.- 1. Normed spaces.- 2. Banach spaces.- 3. Linear forms.- 4. The adjoint space.- 5. The principle of uniform boundedness.- 6. Weak convergence.- 7. Weak* convergence.- 8. The quotient space.- § 2. Linear operators in Banach spaces.- 1. Linear operators. The domain and range.- 2. Continuity and boundedness.- 3. Ordinary differential operators of second order.- § 3. Bounded operators.- 1. The space of bounded operators.- 2. The operator algebra ?(X).- 3. The adjoint operator.- 4. Projections.- § 4. Compact operators.- 1. Definition.- 2. The space of compact operators.- 3. Degenerate operators. The trace and determinant.- § 5. Closed operators.- 1. Remarks on unbounded operators.- 2. Closed operators.- 3. Closable operators.- 4. The closed graph theorem.- 5. The adjoint operator.- 6. Commutativity and decomposition.- § 6. Resolvents and spectra.- 1. Definitions.- 2. The spectra of bounded operators.- 3. The point at infinity.- 4. Separation of the spectrum.- 5. Isolated eigenvalues.- 6. The resolvent of the adjoint.- 7. The spectra of compact operators.- 8. Operators with compact resolvent.- Four Stability theorems.- §1. Stability of closedness and bounded invertibility.- 1. Stability of closedness under relatively bounded perturbation.- 2. Examples of relative boundedness.- 3. Relative compactness and a stability theorem.- 4. Stability of bounded in vertibility.- § 2. Generalized convergence of closed operators.- 1. The gap between subspaces.- 2. The gap and the dimension.- 3. Duality.- 4. The gap between closed operators.- 5. Further results on the stability of bounded in vertibility.- 6. Generalized convergence.- § 3. Perturbation of the spectrum.- 1. Upper semicontinuity of the spectrum.- 2. Lower semi-discontinuity of the spectrum.- 3. Continuity and analyticity of the resolvent.- 4. Semicontinuity of separated parts of the spectrum.- 5. Continuity of a finite system of eigenvalues.- 6. Change of the spectrum under relatively bounded perturbation.- 7. Simultaneous consideration of an infinite number of eigenvalues.- 8. An application to Banach algebras. Wiener’s theorem.- § 4. Pairs of closed linear manifolds.- 1. Definitions.- 2. Duality.- 3. Regular pairs of closed linear manifolds.- 4. The approximate nullity and deficiency.- 5. Stability theorems.- § 5. Stability theorems for semi-Fredholm operators.- 1. The nullity, deficiency and index of an operator.- 2. The general stability theorem.- 3. Other stability theorems.- 4. Isolated eigenvalues.- 5. Another form of the stability theorem.- 6. Structure of the spectrum of a closed operator.- § 6. Degenerate perturbations.- 1. The Weinstein-Aronszajn determinants.- 2. The W-A formulas.- 3. Proof of the W-A formulas.- 4. Conditions excluding the singular case.- Five Operators in Hilbert spaces.- § 1. Hilbert space.- 1. Basic notions.- 2. Complete orthonormal families.- § 2. Bounded operators in Hilbert spaces.- 1. Bounded operators and their adjoints.- 2. Unitary and isometric operators.- 3. Compact operators.- 4. The Schmidt class.- 5. Perturbation of orthonormal families.- § 3. Unbounded operators in Hilbert spaces.- 1. General remarks.- 2. The numerical range.- 3. Symmetric operators.- 4. The spectra of symmetric operators.- 5. The resolvents and spectra of selfadjoint operators.- 6. Second-order ordinary differential operators.- 7. The operators T*T.- 8. Normal operators.- 9. Reduction of symmetric operators.- 10. Semibounded and accretive operators.- 11. The square root of an m-accretive operator.- § 4. Perturbation of self adjoint operators.- 1. Stability of selfadjointness.- 2. The case of relative bound 1.- 3. Perturbation of the spectrum.- 4. Semibounded operators.- 5. Completeness of the eigenprojections of slightly non-selfadjoint operators.- § 5. The Schrödinger and Dirac operators.- 1. Partial differential operators.- 2. The Laplacian in the whole space.- 3. The Schrödinger operator with a static potential.- 4. The Dirac operator.- Six Sesquilinear forms in Hilbert spaces and associated operators.- § 1. Sesquilinear and quadratic forms.- 1. Definitions.- 2. Semiboundedness.- 3. Closed forms.- 4. Closable forms.- 5. Forms constructed from sectorial operators.- 6. Sums of forms.- 7. Relative boundedness for forms and operators.- § 2. The representation theorems.- 1. The first representation theorem.- 2. Proof of the first representation theorem.- 3. The Friedrichs extension.- 4. Other examples for the representation theorem.- 5. Supplementary remarks.- 6. The second representation theorem.- 7. The polar decomposition of a c




Autore

Biography of Tosio Kato

Tosio Kato was born in 1917 in a village to the north of Tokyo. He studied theoretical physics at the Imperial University of Tokyo. After several years of inactivity during World War II due to poor health, he joined the Faculty of Science at the University of Tokyo in 1951. From 1962 he was Professor of Mathematics at the University of California, Berkeley, where he is now Professor Emeritus.

Kato was a pioneer in modern mathematical physics. He worked in te areas of operator theory, quantum mechanics, hydrodynamics, and partial differential equations, both linear and nonlinear.





I LIBRI CHE INTERESSANO A CHI HA I TUOI GUSTI

Zero and pi
And i saw sequences of petals and leaves
Fractions for dummies



I LIBRI ACQUISTATI DA CHI HA I TUOI GUSTI

1984. level b2
Moby dick. level a2
Concorso ministero della giustizia - 2600 assistenti - manuale di preparazione
Giallo in vacanza 2
Fräulein else. niveau a2/b1



Altre Informazioni

ISBN:

9783540586616

Condizione: Nuovo
Collana: CLASSICS IN MATHEMATICS
Dimensioni: 235 x 155 mm Ø 1990 gr
Formato: Brossura
Illustration Notes:XXI, 623 p.
Pagine Arabe: 623
Pagine Romane: xxi


Dicono di noi





Per noi la tua privacy è importante


Il sito utilizza cookie ed altri strumenti di tracciamento che raccolgono informazioni dal dispositivo dell’utente. Oltre ai cookie tecnici ed analitici aggregati, strettamente necessari per il funzionamento di questo sito web, previo consenso dell’utente possono essere installati cookie di profilazione e marketing e cookie dei social media. Cliccando su “Accetto tutti i cookie” saranno attivate tutte le categorie di cookie. Per accettare solo deterninate categorie di cookie, cliccare invece su “Impostazioni cookie”. Chiudendo il banner o continuando a navigare saranno installati solo cookie tecnici. Per maggiori dettagli, consultare la Cookie Policy.

Impostazioni cookie
Rifiuta Tutti i cookie
Accetto tutti i cookie
X