Optimisation Of Industrial Processes At Supervisory Level - Saez Doris A.; Cipriano Aldo; Ordys Andrzej W. | Libro Springer London 10/2001 - HOEPLI.it


home libri books ebook dvd e film top ten sconti 0 Carrello


Torna Indietro

saez doris a.; cipriano aldo; ordys andrzej w. - optimisation of industrial processes at supervisory level

Optimisation of Industrial Processes at Supervisory Level Application to Control of Thermal Power Plants

; ;




Disponibilità: Normalmente disponibile in 15 giorni
A causa di problematiche nell'approvvigionamento legate alla Brexit sono possibili ritardi nelle consegne.


PREZZO
155,98 €
NICEPRICE
148,18 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Pubblicazione: 10/2001
Edizione: 2002





Sommario

Content.- 1. Introduction.- 2. Non-linear Dynamic Modelling for Control Design.- 2.1 Introduction.- 2.2 Fundamentals of Fuzzy Logic.- 2.2.1 Basic Definitions.- 2.2.2 Basic Operations for Fuzzy Sets.- 2.3 Dynamic Models Based on Fuzzy Logic.- 2.3.1 Linguistic Fuzzy Models.- 2.3.2 Takagi-and-Sugeno Models.- 2.3.3 Position Models and Models of Gradient Position.- 2.3.4 Fuzzy Relational Models.- 2.3.5 Radial Basis Function Network - a Fuzzy Approach.- 2.4 Parameters Estimation.- 2.5 Structure Identification.- 2.6 Discussion.- 2.7 A New Structure Identification Method for Fuzzy Models.- 2.7.1 Identification Procedure.- 2.7.2 Sensitivity Analysis.- 2.7.3 Application Examples.- 2.7.4 Application to Thermal Power Plant “Nueva Renca”.- 2.7.5 Analysis of Results.- 3. Non-linear Predictive Control.- 3.1 Fundamentals of Predictive Control.- 3.2 Literature Review.- 3.3 Prediction from Linear Models.- 3.4 Linear Predictive Control Algorithms.- 3.4.1 Generalised Predictive Control.- 3.4.2 Dynamic Matrix Control.- 3.5 Prediction for Non-linear Models.- 3.6 Non-linear Predictive Control.- 3.6.1 MBPC Based on Fuzzy Relational Models.- 3.6.2 Fuzzy Predictive Control Algorithms Based on Takagi-and-Sugeno Models.- 3.7 Discussion.- 4. Supervisory Optimal Control for a Pre-specified Regulatory Level.- 4.1 Problem Statement.- 4.1.1 Process Modelling.- 4.1.2 Modelling of the Regulatory Level.- 4.1.3 General Objective Function and Constraints.- 4.2 Alternative Solutions.- 4.2.1 Direct Method.- 4.2.2 Indirect Method.- 4.3 Supervisory Controller Design Based on Linear Models.- 4.3.1 Problem Statement.- 4.3.2 Supervisory Controller Without Constraints.- 4.3.3 Supervisory Controller with Constraints.- 4.4 Supervisory Controller Design Based on Non-linear Models.- 4.4.1 Problem Statement.- 4.4.2 Non-linear Supervisory Controller Without Constraints.- 4.4.3 Non-linear Supervisory Controller with Constraints.- 4.5 Application to a Boiler System.- 4.5.1 Boiler System Simulator.- 4.5.2 Problem Statement.- 4.5.3 Supervisory Controller.- 4.5.4 Comparative Analysis.- 4.6 Discussion.- 5. Application to the Control of Thermal Power Plants.- 5.1 Modelling and Simulation of a Combined Cycle Power Plant.- 5.1.1 Process Description.- 5.1.2 Analysis of the Different Models.- 5.1.3 Formulation of Combined Cycle Power Plant Model.- 5.1.4 Simulator for MATLAB®-SMMULINK® Environment.- 5.1.5 Simulator Tests.- 5.2 Control of Thermal Power Plant Boiler.- 5.2.1 Analysis of Different Control Strategies.- 5.2.2 Statement of the Supervisory Optimal Control Problem.- 5.2.3 Supervisory Control Based on a Linear Model of the Boiler.- 5.2.4 Supervisory Control Based on a Non-linear Model of the Boiler.- 5.2.5 Analysis of Results.- 6. Discussion and Conclusions.- Appendix A. Sensitivity Analysis Program.- Appendix B. Prediction of Controlled Variables and Manipulated Variables.- B.1 Prediction of Controlled Variables.- B.2 Prediction of Manipulated Variables.- Appendix C. Special Cases of Polynomial Cancellations.- C.1 A Quadratic Objective Function of the Manipulated Variables at the Supervisory Level.- C.2 A GPC Objective Function at the Supervisory Level.- Appendix D. Supervisory Controller Programs.- D.1 Direct Method.- D.2 Indirect Method.- D.3 One-step Fuzzy Predictor.- D.4 Multi-step Fuzzy Predictor.- Appendix E. Main Variables of a Combined Cycle Thermal Power Plant.- E.1 Boiler.- E.1.1 Furnace.- E.1.2 Risers.- E.1.3 Drum.- E.1.4 Superheater.- E.1.5 Reheater.- E.1.6 Economiser.- E.2 Steam Turbine.- E.2.1 The High Pressure Turbine.- E.2.2 The Intermediate Pressure Turbine.- E.2.3 The Low Pressure Turbine.- E.2.4 Steam Turbine.- E.3 Gas Turbine.- E.3.1 Compressor.- E.3.2 Combustion Chamber.- E.3.3 Turbine.- Appendix F. Simulator Programs in MATLAB®-SIMULINK®.- F.1 Boiler.- F.1.1 Furnace.- F.1.2 Risers.- F.1.3 Drum.- F.1.4 Superheater.- F.1.5 Reheater.- F.1.6 Economiser.- F.2 Steam Turbine.- F.2.1 The High Pressure Turbine.- F.2.2 The Intermediate Pressure Turbine.- F.2.3 The Low Pressure Turbine.- F.3 Gas Turbine.- F.3.1 Compressor.- F.3.2 Combustion Chamber.- F.3.3 Turbine.- References.




Trama

In the increasingly competitive modern world, the industrial sector faces new challenges such as improving productivity and reducing costs while taking into account the process operational constraints.
As energy demand increases in many countries, especially in big cities where the environmental concerns are very important and resources to produce energy are limited, the efficiency of operation of power plants becomes of paramount importance.
Under this scenario, this book presents new methodologies to improve power plants' efficiency, by using automatic control algorithms. This will lead to an improvement in the generation of companies' profit and also in the quality of their final product.







Altre Informazioni

ISBN:

9781852333867

Condizione: Nuovo
Collana: Advances in Industrial Control
Dimensioni: 235 x 155 mm Ø 1040 gr
Formato: Copertina rigida
Pagine Arabe: 187
Pagine Romane: xvi






Utilizziamo i cookie di profilazione, anche di terze parti, per migliorare la navigazione, per fornire servizi e proporti pubblicità in linea con le tue preferenze. Se vuoi saperne di più o negare il consenso a tutti o ad alcuni cookie clicca qui. Chiudendo questo banner o proseguendo nella navigazione acconsenti all’uso dei cookie.

X