libri scuola books Fumetti ebook dvd top ten sconti 0 Carrello


Torna Indietro

d'ambrosio raffaele - numerical approximation of ordinary differential problems
Zoom

Numerical Approximation of Ordinary Differential Problems From Deterministic to Stochastic Numerical Methods




Disponibilità: Normalmente disponibile in 15 giorni


PREZZO
70,98 €
NICEPRICE
67,43 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Editore:

Springer

Pubblicazione: 08/2023
Edizione: 1st ed. 2023





Trama

This book is focused on the numerical discretization of ordinary differential equations (ODEs), under several perspectives. The attention is first conveyed to providing accurate numerical solutions of deterministic problems. Then, the presentation moves to a more modern vision of numerical approximation, oriented to reproducing qualitative properties of the continuous problem along the discretized dynamics over long times. The book finally performs some steps in the direction of stochastic differential equations (SDEs), with the intention of offering useful tools to generalize the techniques introduced for the numerical approximation of ODEs to the stochastic case, as well as of presenting numerical issues natively introduced for SDEs.

The book is the result of an intense teaching experience as well as of the research carried out in the last decade by the author. It is both intended for students and instructors: for the students, this book is comprehensive and ratherself-contained; for the instructors, there is material for one or more monographic courses on ODEs and related topics. In this respect, the book can be followed in its designed path and includes motivational aspects, historical background, examples and a software programs, implemented in Matlab, that can be useful for the laboratory part of a course on numerical ODEs/SDEs.

The book also contains the portraits of several pioneers in the numerical discretization of differential problems, useful to provide a framework to understand their contributes in the presented fields. Last, but not least, rigor joins readability in the book.




Sommario

- 1. Ordinary Differential Equations. - 2. Discretization of the Problem. - 3. Linear Multistep Methods. - 4. Runge-Kutta Methods. - 5. Multivalue Methods. - 6. Linear Stability. - 7. Stiff Problems. - 8. Geometric Numerical Integration. - 9. Numerical Methods for Stochastic Differential Equations.




Autore

Raffaele D'Ambrosio is Full Professor of Numerical Analysis at the University of L'Aquila. He got his Ph.D. in Mathematics in 2006, by a joint program between the University of Salerno and Arizona State University. In 2011 he has been awarded with Galileo Galilei Prize for young researchers. In 2014 he has been Fulbright Research Scholar at Georgia Institute of Technology. His main research interests regard structure-preserving approximation of deterministic and stochastic evolutive problems.










Altre Informazioni

ISBN:

9783031313424

Condizione: Nuovo
Collana: UNITEXT
Dimensioni: 235 x 155 mm
Formato: Brossura
Illustration Notes:XIV, 385 p. 62 illus.
Pagine Arabe: 385
Pagine Romane: xiv


Dicono di noi





Per noi la tua privacy è importante


Il sito utilizza cookie ed altri strumenti di tracciamento che raccolgono informazioni dal dispositivo dell’utente. Oltre ai cookie tecnici ed analitici aggregati, strettamente necessari per il funzionamento di questo sito web, previo consenso dell’utente possono essere installati cookie di profilazione e marketing e cookie dei social media. Cliccando su “Accetto tutti i cookie” saranno attivate tutte le categorie di cookie. Per accettare solo deterninate categorie di cookie, cliccare invece su “Impostazioni cookie”. Chiudendo il banner o continuando a navigare saranno installati solo cookie tecnici. Per maggiori dettagli, consultare la Cookie Policy.

Impostazioni cookie
Rifiuta Tutti i cookie
Accetto tutti i cookie
X