
Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.
Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente
Explore the fascinating intersection of mathematics and combustion theory in this comprehensive monograph, inspired by the pioneering work of N. N. Semenov and D. A. Frank-Kamenetskii. Delving into the nonlinear functional analytic approach, this book examines semilinear elliptic boundary value problems governed by the Arrhenius equation and Newton's law of heat exchange.
Key topics include:
Designed for researchers and advanced students, this monograph provides a deep understanding of nonlinear functional analysis and elliptic boundary value problems through their application to combustion and chemical reactor models. Featuring detailed illustrations, clearly labeled figures, and tables, this book ensures clarity and enhances comprehension of complex concepts.
Whether you are exploring combustion theory, functional analysis, or applied mathematics, this text offers profound insights and a thorough mathematical foundation.
Preface.- Introduction and Main Results.- Part I. A Short Course in Nonlinear Functional Analysis.- Elements of Degree Theory.- Theory of Positive Mappings in Ordered Banach Spaces.- Elements of Bifurcation Theory.- Part II. Introduction to Semilinear Elliptic Problems via Semenov Approximation.- Elements of Functions Spaces.- Semilinear Hypoelliptic Robin Problems via Semenov Approximation.- Spectral Analysis of the Closed Realization A.- Local Bifurcation Theorem for Problem (6.4).- Fixed Point Theorems in Ordered Banach Spaces.- The Super-subsolution Method.- Sublinear Hypoelliptic Robin Problems.- Part III. A Combustion Problem with General Arrhenius Equations and Newtonian Cooling.- Proof of Theorem 1.5 (Existence and Uniqueness).- Proof of Theorem 1.7 (Multiplicity).- Proof of Theorem 1.9 (Unique solvability for λ sufficiently small).- Proof of Theorem 1.10 (Unique solvability for λ sufficiently large).- Proof of Theorem 1.11 (Asymptotics).- Part IV. Summary and Discussion.- Open Problems in Numerical Analysis.- Concluding Remarks.- Part V Appendix.- A The Maximum Principle for Second Order Elliptic Operators.- Bibliography.- Index.


Il sito utilizza cookie ed altri strumenti di tracciamento che raccolgono informazioni dal dispositivo dell’utente. Oltre ai cookie tecnici ed analitici aggregati, strettamente necessari per il funzionamento di questo sito web, previo consenso dell’utente possono essere installati cookie di profilazione e marketing e cookie dei social media. Cliccando su “Accetto tutti i cookie” saranno attivate tutte le categorie di cookie. Per accettare solo deterninate categorie di cookie, cliccare invece su “Impostazioni cookie”. Chiudendo il banner o continuando a navigare saranno installati solo cookie tecnici. Per maggiori dettagli, consultare la Cookie Policy.