libri scuola books Fumetti ebook dvd top ten sconti 0 Carrello


Torna Indietro

rojas raul - neural networks
Zoom

Neural Networks A Systematic Introduction




Disponibilità: Normalmente disponibile in 15 giorni


PREZZO
97,98 €
NICEPRICE
93,08 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Editore:

Springer

Pubblicazione: 07/1996





Trama

Neural networks are a computing paradigm that is finding increasing attention among computer scientists. In this book, theoretical laws and models previously scattered in the literature are brought together into a general theory of artificial neural nets. Always with a view to biology and starting with the simplest nets, it is shown how the properties of models change when more general computing elements and net topologies are introduced. Each chapter contains examples, numerous illustrations, and a bibliography. The book is aimed at readers who seek an overview of the field or who wish to deepen their knowledge. It is suitable as a basis for university courses in neurocomputing.




Sommario

1. The Biological Paradigm.- 1.1 Neural computation.- 1.2 Networks of neurons.- 1.3 Artificial neural networks.- 1.4 Historical and bibliographical remarks.- 2. Threshold Logic.- 2.1 Networks of functions.- 2.2 Synthesis of Boolean functions.- 2.3 Equivalent networks.- 2.4 Recurrent networks.- 2.5 Harmonic analysis of logical functions.- 2.6 Historical and bibliographical remarks.- 3.Weighted Networks — The Perceptron.- 3.1 Perceptrons and parallel processing.- 3.2 Implementation of logical functions.- 3.3 Linearly separable functions.- 3.4 Applications and biological analogy.- 3.5 Historical and bibliographical remarks.- 4. Perceptron Learning.- 4.1 Learning algorithms for neural networks.- 4.2 Algorithmic learning.- 4.3 Linear programming.- 4.4 Historical and bibliographical remarks.- 5. Unsupervised Learning and Clustering Algorithms.- 5.1 Competitive learning.- 5.2 Convergence analysis.- 5.3 Principal component analysis.- 5.4 Some applications.- 5.5 Historical and bibliographical remarks.- 6. One and Two Layered Networks.- 6.1 Structure and geometric visualization.- 6.2 Counting regions in input and weight space.- 6.3 Regions for two layered networks.- 6.4 Historical and bibliographical remarks.- 7. The Backpropagation Algorithm.- 7.1 Learning as gradient descent.- 7.2 General feed-forward networks.- 7.3 The case of layered networks.- 7.4 Recurrent networks.- 7.5 Historical and bibliographical remarks.- 8. Fast Learning Algorithms.- 8.1 Introduction — classical backpropagation.- 8.2 Some simple improvements to backpropagation.- 8.3 Adaptive step algorithms.- 8.4 Second-order algorithms.- 8.5 Relaxation methods.- 8.6 Historical and bibliographical remarks.- 9. Statistics and Neural Networks.- 9.1 Linear and nonlinear regression.- 9.2 Multiple regression.- 9.3Classification networks.- 9.4 Historical and bibliographical remarks.- 10. The Complexity of Learning.- 10.1 Network functions.- 10.2 Function approximation.- 10.3 Complexity of learning problems.- 10.4 Historical and bibliographical remarks.- 11. Fuzzy Logic.- 11.1 Fuzzy sets and fuzzy logic.- 11.2 Fuzzy inferences.- 11.3 Control with fuzzy logic.- 11.4 Historical and bibliographical remarks.- 12. Associative Networks.- 12.1 Associative pattern recognition.- 12.2 Associative learning.- 12.3 The capacity problem.- 12.4 The pseudoinverse.- 12.5 Historical and bibliographical remarks.- 13. The Hopfield Model.- 13.1 Synchronous and asynchronous networks.- 13.2 Definition of Hopfield networks.- 13.3 Converge to stable states.- 13.4 Equivalence of Hopfield and perceptron learning.- 13.5 Parallel combinatorics.- 13.6 Implementation of Hopfield networks.- 13.7 Historical and bibliographical remarks.- 14. Stochastic Networks.- 14.1 Variations of the Hopfield model.- 14.2 Stochastic systems.- 14.3 Learning algorithms and applications.- 14.4 Historical and bibliographical remarks.- 15. Kohonen Networks.- 15.1 Self-organization.- 15.2 Kohonen’s model.- 15.3 Analysis of convergence.- 15.4 Applications.- 15.5 Historical and bibliographical remarks.- 16. Modular Neural Networks.- 16.1 Constructive algorithms for modular networks.- 16.2 Hybrid networks.- 16.3 Historical and bibliographical remarks.- 17. Genetic Algorithms.- 17.1 Coding and operators.- 17.2 Properties of genetic algorithms.- 17.3 Neural networks and genetic algorithms.- 17.4 Historical and bibliographical remarks.- 18. Hardware for Neural Networks.- 18.1 Taxonomy of neural hardware.- 18.2 Analog neural networks.- 18.3 Digital networks.- 18.4 Innovative computer architectures.- 18.5 Historical and bibliographicalremarks.










Altre Informazioni

ISBN:

9783540605058

Condizione: Nuovo
Dimensioni: 235 x 155 mm
Formato: Brossura
Illustration Notes:XX, 502 p. 154 illus.
Pagine Arabe: 502
Pagine Romane: xx


Dicono di noi





Per noi la tua privacy è importante


Il sito utilizza cookie ed altri strumenti di tracciamento che raccolgono informazioni dal dispositivo dell’utente. Oltre ai cookie tecnici ed analitici aggregati, strettamente necessari per il funzionamento di questo sito web, previo consenso dell’utente possono essere installati cookie di profilazione e marketing e cookie dei social media. Cliccando su “Accetto tutti i cookie” saranno attivate tutte le categorie di cookie. Per accettare solo deterninate categorie di cookie, cliccare invece su “Impostazioni cookie”. Chiudendo il banner o continuando a navigare saranno installati solo cookie tecnici. Per maggiori dettagli, consultare la Cookie Policy.

Impostazioni cookie
Rifiuta Tutti i cookie
Accetto tutti i cookie
X