Mining Data For Financial Applications - Bitetta Valerio (Curatore); Bordino Ilaria (Curatore); Ferretti Andrea (Curatore); Gullo Francesco (Curatore); Ponti Giovanni (Curatore); Severini Lorenzo (Curatore) | Libro Springer 01/2021 - HOEPLI.it


home libri books ebook dvd e film top ten sconti 0 Carrello


Torna Indietro

bitetta valerio (curatore); bordino ilaria (curatore); ferretti andrea (curatore); gullo francesco (curatore); ponti giovanni (curatore); severini lorenzo (curatore) - mining data for financial applications

Mining Data for Financial Applications 5th ECML PKDD Workshop, MIDAS 2020, Ghent, Belgium, September 18, 2020, Revised Selected Papers

; ; ; ; ;




Disponibilità: Normalmente disponibile in 15 giorni


PREZZO
48,98 €
NICEPRICE
46,53 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Editore:

Springer

Pubblicazione: 01/2021
Edizione: 1st ed. 2021





Trama

This book constitutes revised selected papers from the 5th Workshop on Mining Data for Financial Applications, MIDAS 2020, held in conjunction with ECML PKDD 2020, in Ghent, Belgium, in September 2020.*

The 8 full and 3 short papers presented in this volume were carefully reviewed and selected from 15 submissions. They deal with challenges, potentialities, and applications of leveraging data-mining tasks regarding problems in the financial domain.

*The workshop was held virtually due to the COVID-19 pandemic.

“Information Extraction from the GDELT Database to Analyse EU Sovereign Bond Markets” and “Exploring the Predictive Power of News and Neural Machine Learning Models for Economic Forecasting” are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.





Sommario

Trade Selection with Supervised Learning and Optimal Coordinate Ascent (OCA).- How much does Stock Prediction improve with Sentiment Analysis?.- Applying Machine Learning to Predict Closing Prices in Stock Market: a case study.- Financial Fraud Detection with Improved Neural Arithmetic Logic Units.- Information Extraction from the GDELT Database to Analyse EU Sovereign Bond Markets.- Multi-Objective Particle Swarm Optimization for Feature Selection in Credit Scoring.- A comparative analysis of Temporal Long Text Similarity: Application to Financial Documents.- Ranking Cryptocurrencies by Brand Importance: a Social Media Analysis in ENEAGRID.- Towards the Prediction of Electricity Prices at the Intraday Market Using Shallow and Deep-Learning Methods.- Neither in the Programs Nor in the Data: Mining the Hidden Financial Knowledge with Knowledge Graphs and Reasoning.- Exploring the Predictive Power of News and Neural Machine Learning Models for Economic Forecasting.







Altre Informazioni

ISBN:

9783030669805

Condizione: Nuovo
Collana: Lecture Notes in Computer Science
Dimensioni: 235 x 155 mm Ø 261 gr
Formato: Brossura
Illustration Notes:14 Illustrations, black and white
Pagine Arabe: 151
Pagine Romane: x






Utilizziamo i cookie di profilazione, anche di terze parti, per migliorare la navigazione, per fornire servizi e proporti pubblicità in linea con le tue preferenze. Se vuoi saperne di più o negare il consenso a tutti o ad alcuni cookie clicca qui. Chiudendo questo banner o proseguendo nella navigazione acconsenti all’uso dei cookie.

X