Measurement Error In Nonlinear Models - Carroll Raymond J.; Ruppert David; Stefanski Leonard A.; Crainiceanu Ciprian M. | Libro Chapman And Hall/Crc 06/2006 -

home libri books ebook dvd e film top ten sconti 0 Carrello

Torna Indietro

carroll raymond j.; ruppert david; stefanski leonard a.; crainiceanu ciprian m. - measurement error in nonlinear models

Measurement Error in Nonlinear Models A Modern Perspective, Second Edition

; ; ;

Disponibilità: Normalmente disponibile in 10 giorni

124,98 €
118,73 €

Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.

Pagabile anche con App18 Bonus Cultura e Carta Docenti

Facebook Twitter Aggiungi commento

Spese Gratis


Lingua: Inglese
Pubblicazione: 06/2006
Edizione: Edizione nuova, 2° edizione

Note Editore

It’s been over a decade since the first edition of Measurement Error in Nonlinear Models splashed onto the scene, and research in the field has certainly not cooled in the interim. In fact, quite the opposite has occurred. As a result, Measurement Error in Nonlinear Models: A Modern Perspective, Second Edition has been revamped and extensively updated to offer the most comprehensive and up-to-date survey of measurement error models currently available.

What’s new in the Second Edition?

·         Greatly expanded discussion and applications of Bayesian computation via Markov Chain Monte Carlo techniques

·         A new chapter on longitudinal data and mixed models

·         A thoroughly revised chapter on nonparametric regression and density estimation

·         A totally new chapter on semiparametric regression

·         Survival analysis expanded into its own separate chapter

·         Completely rewritten chapter on score functions

·         Many more examples and illustrative graphs

·         Unique data sets compiled and made available online

In addition, the authors expanded the background material in Appendix A and integrated the technical material from chapter appendices into a new Appendix B for convenient navigation. Regardless of your field, if you’re looking for the most extensive discussion and review of measurement error models, then Measurement Error in Nonlinear Models: A Modern Perspective, Second Edition is your ideal source.


Guide to Notation
The Double/Triple-Whammy of Measurement Error
Classical Measurement Error A Nutrition Example
Measurement Error Examples
Radiation Epidemiology and Berkson Errors
Classical Measurement Error Model Extensions
Other Examples of Measurement Error Models
Checking The Classical Error Model
Loss of Power
A Brief Tour
Bibliographic Notes
Important Concepts
Functional and Structural Models
Models for Measurement Error
Sources of Data
Is There an “Exact" Predictor? What is Truth?
Differential and Nondifferential Error
Bibliographic Notes
Linear Regression and Attenuation
Bias Caused by Measurement Error
Multiple and Orthogonal Regression
Correcting for Bias
Bias Versus Variance
Attenuation in General Problems
Bibliographic Notes
Regression Calibration
The Regression Calibration Algorithm
NHANES Example
Estimating the Calibration Function Parameters
Multiplicative Measurement Error
Standard Errors
Expanded Regression Calibration Models
Examples of the Approximations
Theoretical Examples
Bibliographic Notes and Software
Simulation Extrapolation
Simulation Extrapolation Heuristics
The SIMEX Algorithm
SIMEX in Some Important Special Cases
Extensions and Related Methods
Bibliographic Notes
Instrumental Variables
Instrumental Variables in Linear Models
Approximate Instrumental Variable Estimation
Adjusted Score Method
Other Methodologies
Bibliographic Notes
Score Function Methods
Linear and Logistic Regression
Conditional Score Functions
Corrected Score Functions
Computation and Asymptotic Approximations
Comparison of Conditional and Corrected Scores
Bibliographic Notes
Likelihood and Quasilikelihood
Steps 2 and 3: Constructing Likelihoods
Step 4: Numerical Computation of Likelihoods
Cervical Cancer and Herpes
Framingham Data
Nevada Test Site Reanalysis
Bronchitis Example
Quasilikelihood and Variance Function Models
Bibliographic Notes
Bayesian Methods
The Gibbs Sampler
Metropolis-Hastings Algorithm
Linear Regression
Nonlinear Models
Logistic Regression
Berkson Errors
Automatic implementation
Cervical Cancer and Herpes
Framingham Data
OPEN Data: A Variance Components Model
Bibliographic Notes
Hypothesis Testing
The Regression Calibration Approximation
Illustration: OPEN Data
Hypotheses about Sub-Vectors of βx and βz
Efficient Score Tests of H0 : βx = 0
Bibliographic Notes
Longitudinal Data and Mixed Models
Mixed Models for Longitudinal Data
Mixed Measurement Error Models
A Bias Corrected Estimator
Regression Calibration for GLMMs
Maximum Likelihood Estimation
Joint Modeling
Other Models and Applications
Example: The CHOICE Study
Bibliographic Notes
Nonparametric Estimation
Nonparametric Regression
Baseline Change Example
Bibliographic Notes
Semiparametric Regression
Additive Models
MCMC for Additive Spline Models
Monte-Carlo EM-Algorithm
Simulation with Classical Errors
Simulation with Berkson Errors
Semiparametrics: X Modeled Parametrically
Parametric Models: No Assumptions on X
Bibliographic Notes
Survival Data
Notation and Assumptions
Induced Hazard Function
Regression Calibration for Survival Analysis
SIMEX for Survival Analysis
Chronic Kidney Disease Progression
Semi and Nonparametric Methods
Likelihood Inference for Frailty Models
Bibliographic Notes
Response Variable Error
Response Error and Linear Regression
Other Forms of Additive Response Error
Logistic Regression with Response Error
Likelihood Methods
Use of Complete Data Only
Semiparametric Methods for Validation Data
Bibliographic Notes
Appendix A: Background Material
Normal and Lognormal Distributions
Gamma and Inverse Gamma Distributions
Best and Best Linear Prediction and Regression
Likelihood Methods
Unbiased Estimating Equations
Quasilikelihood and Variance Function Models (QVF)
Generalized Linear Models
Bootstrap Methods
Appendix B: Technical Details
Appendix to Chapter 1: Power in Berkson and Classical Error Models
Appendix to Chapter 3: Linear Regression and Attenuation
Regression Calibration
Instrumental Variables
Score Function Methods
Likelihood and Quasilikelihood
Bayesian Methods
Applications and Examples Index

Altre Informazioni



Condizione: Nuovo
Collana: Chapman & Hall/CRC Monographs on Statistics & Applied Probability
Dimensioni: 9 x 6 in Ø 1.80 lb
Formato: Copertina rigida
Illustration Notes:75 b/w images
Pagine Arabe: 484

Utilizziamo i cookie di profilazione, anche di terze parti, per migliorare la navigazione, per fornire servizi e proporti pubblicità in linea con le tue preferenze. Se vuoi saperne di più o negare il consenso a tutti o ad alcuni cookie clicca qui. Chiudendo questo banner o proseguendo nella navigazione acconsenti all’uso dei cookie.