Mathematical Analysis Of The Navier-Stokes Equations - Hieber Matthias; Robinson James C.; Shibata Yoshihiro; Galdi Giovanni P. (Curatore); Shibata Yoshihiro (Curatore) | Libro Springer 04/2020 - HOEPLI.it


home libri books ebook dvd e film top ten sconti 0 Carrello


Torna Indietro

hieber matthias; robinson james c.; shibata yoshihiro; galdi giovanni p. (curatore); shibata yoshihiro (curatore) - mathematical analysis of the navier-stokes equations

Mathematical Analysis of the Navier-Stokes Equations Cetraro, Italy 2017

; ; ; ;




Disponibilità: solo 1 copia disponibile, compra subito!

Se ordini entro 20 ore e 16 minuti, consegna garantita in 48 ore lavorative
scegliendo le spedizioni Express



PREZZO
23,90 €
NICEPRICE
22,70 €
SCONTO
5%



SPEDIZIONE GRATIS
con corriere veloce per acquisti oltre 29,00 €.


Pagabile anche con 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Dettagli

Genere:Libro
Lingua: Inglese
Editore:

Springer

Pubblicazione: 04/2020
Edizione: 1st ed. 2020





Trama

This book collects together a unique set of articles dedicated to several fundamental aspects of the Navier–Stokes equations. As is well known, understanding the mathematical properties of these equations, along with their physical interpretation, constitutes one of the most challenging questions of applied mathematics. Indeed, the Navier-Stokes equations feature among the Clay Mathematics Institute's seven Millennium Prize Problems (existence of global in time, regular solutions corresponding to initial data of unrestricted magnitude).   

The text comprises three extensive contributions covering the following topics: (1) Operator-Valued H8-calculus, R-boundedness, Fourier multipliers and maximal Lp-regularity theory for a large, abstract class of quasi-linear evolution problems with applications to Navier–Stokes equations and other fluid model equations; (2)  Classical existence, uniqueness and regularity theorems of solutions to the Navier–Stokes initial-value problem, along with space-time partial regularity and investigation of the smoothness of the Lagrangean flow map; and (3) A complete mathematical theory of R-boundedness and maximal regularity with applications to free boundary problems for the Navier–Stokes equations with and without surface tension.

Offering a general mathematical framework that could be used to study fluid problems and, more generally, a wide class of abstract evolution equations, this volume is aimed at graduate students and researchers who want to become acquainted with fundamental problems related to the Navier–Stokes equations. 





Sommario

Giovanni P. Galdi, Yoshihiro Shibata: Preface.- Matthias Hieber: Analysis of Viscous Fluid Flows: An Approach by Evolution Equations.- James C. Robinson: Partial regularity for the 3D Navier-Stokes equations.- Yoshihiro ShibataBoundedness, Maximal Regularity and Free Boundary Problems for the Navier Stokes Equations.








Altre Informazioni

ISBN:

9783030362256

Condizione: Nuovo
Collana: Lecture Notes in Mathematics
Dimensioni: 235 x 155 mm Ø 718 gr
Formato: Brossura
Illustration Notes:3 Illustrations, black and white
Pagine Arabe: 464
Pagine Romane: vii






Utilizziamo i cookie di profilazione, anche di terze parti, per migliorare la navigazione, per fornire servizi e proporti pubblicità in linea con le tue preferenze. Se vuoi saperne di più o negare il consenso a tutti o ad alcuni cookie clicca qui. Chiudendo questo banner o proseguendo nella navigazione acconsenti all’uso dei cookie.

X