
Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.
Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente
(http://www.topitalianscientists.org/top_italian_scientists.aspx). Dr. Gori is a fellow of the IEEE, ECCAI, and IAPR.
Alessandro Betti Ph.D. is a Postdoctoral Researcher in the Department of Information Engineering and Mathematics (DIISM) of the University of Siena (Siena, Italy). Dr. Betti's interests include analysis of algorithms, discrete mathematics, tree structures, and formulation of "learning laws through least action like principles.
Stefano Melacci Ph.D. is a Senior Researcher (Tenure-Track Assistant Professor) in the area of Computer Science at the Department of Information Engineering and Mathematics, University of Siena (Siena, Italy). He has been the Research Manager of the Italian company QuestIT S.r.l. (Siena, Italy) and a Research Fellow of the Department of Information Engineering and Mathematics, University of Siena, where he received his PhD (2010), and the M.S. Degree (cum Laude). Since 2017 he has served as Associate Editor for the IEEE Transactions on Neural Networks and Learning Systems, and he is an active reviewer for several journals and international conferences.
His profile is strongly characterized by research activity in the fields of Machine Learning and, more generally, Artificial Intelligence. Recently, he has been working on new technologies for Machine Learning-based Conversational Systems and he studied and proposed Multi-Layer architectures (Deep Networks) for extracting information from static images and videos, using adaptive convolutional filters and principles from Information Theory. He previously worked in the context of Kernel Machines and Regularization Theory, under the unifying framework of Learning from Constraints that allows classic learning models to integrate symbolic knowledge representations. He proposed Manifold Regularization-based algorithms and Neural Networks that implement Similarly Measures, with applications to Computer Vision.


Il sito utilizza cookie ed altri strumenti di tracciamento che raccolgono informazioni dal dispositivo dell’utente. Oltre ai cookie tecnici ed analitici aggregati, strettamente necessari per il funzionamento di questo sito web, previo consenso dell’utente possono essere installati cookie di profilazione e marketing e cookie dei social media. Cliccando su “Accetto tutti i cookie” saranno attivate tutte le categorie di cookie. Per accettare solo deterninate categorie di cookie, cliccare invece su “Impostazioni cookie”. Chiudendo il banner o continuando a navigare saranno installati solo cookie tecnici. Per maggiori dettagli, consultare la Cookie Policy.