libri scuola books Fumetti ebook dvd top ten sconti 0 Carrello


Torna Indietro

kanevski mikhail; timonin vadim; pozdnukhov alexi - machine learning for spatial environmental data
Zoom

Machine Learning for Spatial Environmental Data Theory, Applications, and Software

; ;




Disponibilità: Normalmente disponibile in 20 giorni
A causa di problematiche nell'approvvigionamento legate alla Brexit sono possibili ritardi nelle consegne.


PREZZO
136,98 €
NICEPRICE
130,13 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Editore:

EFPL Press

Pubblicazione: 06/2009
Edizione: 1° edizione





Note Editore

This book discusses machine learning algorithms, such as artificial neural networks of different architectures, statistical learning theory, and Support Vector Machines used for the classification and mapping of spatially distributed data. It presents basic geostatistical algorithms as well.The authors describe new trends in machine learning and their application to spatial data. The text also includes real case studies based on environmental and pollution data. It includes a CD-ROM with software that will allow both students and researchers to put the concepts to practice.




Sommario

PREFACE LEARNING FROM GEOSPATIAL DATA Problems and important concepts of machine learning Machine learning algorithms for geospatial data Contents of the book Software description Short review of the literature EXPLORATORY SPATIAL DATA ANALYSIS PRESENTATION OF DATA AND CASE STUDIES Exploratory spatial data analysis Data pre-processing Spatial correlations: Variography Presentation of data k-Nearest neighbours algorithm: a benchmark model for regression and classification Conclusions to chapter GEOSTATISTICS Spatial predictions Geostatistical conditional simulations Spatial classification Software Conclusions ARTIFICIAL NEURAL NETWORKS Introduction Radial basis function neural networks General regression neural networks Probabilistic neural networks Self-organising maps Gaussian mixture models and mixture density network Conclusions SUPPORT VECTOR MACHINES AND KERNEL METHODS Introduction to statistical learning theory Support vector classification Spatial data classification with SVM Support vector regression Advanced topics in kernel methods REFERENCES INDEX










Altre Informazioni

ISBN:

9780849382376

Condizione: Nuovo
Collana: Environmental Sciences: Environmental Engineering
Dimensioni: 9 x 6 in Ø 1.86 lb
Formato: Copertina rigida
Pagine Arabe: 400


Dicono di noi