libri scuola books Fumetti ebook dvd top ten sconti 0 Carrello


Torna Indietro

niggemann oliver (curatore); beyerer jürgen (curatore) - machine learning for cyber physical systems
Zoom

Machine Learning for Cyber Physical Systems Selected papers from the International Conference ML4CPS 2015

;




Disponibilità: Normalmente disponibile in 15 giorni


PREZZO
108,98 €
NICEPRICE
103,53 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Pubblicazione: 02/2016
Edizione: 1st ed. 2016





Trama

The work presents new approaches to Machine Learning for Cyber Physical Systems, experiences and visions. It  contains some selected papers from the international Conference ML4CPS – Machine Learning for Cyber Physical Systems, which was held in Lemgo, October 1-2, 2015.

Cyber Physical Systems are characterized by their ability to adapt and to learn: They analyze their environment and, based on observations, they learn patterns, correlations and predictive models. Typical applications are condition monitoring, predictive maintenance, image processing and diagnosis. Machine Learning is the key technology for these developments.





Sommario

Development of a Cyber-Physical System based on selective dynamic Gaussian naive Bayes model for a self-predict laser surface heat treatment process
control.- Evidence Grid Based Information Fusion for Semantic Classifiers in Dynamic Sensor Networks.- Forecasting Cellular Connectivity for Cyber-
Physical Systems: A Machine Learning Approach.- Towards Optimized Machine Operations by Cloud Integrated Condition Estimation.- Prognostics Health 
Management System based on Hybrid Model to Predict Failures of a Planetary Gear Transmission.- Evaluation of Model-Based Condition Monitoring Systems in Industrial Application Cases.- Towards a novel learning assistant for networked automation systems.- Effcient Image Processing System for an Industrial Machine Learning Task.- Efficient engineering in special purpose machinery through automated control code synthesis based on a functional categorisation.- Geo-Distributed Analytics for the Internet of Things.- Imple
mentation and Comparison of Cluster-Based PSO Extensions in Hybrid Settings with Efficient Approximation.- Machine-specifc Approach for Automatic Classifcation of Cutting Process Efficiency.- Meta-analysis of Maintenance Knowledge Assets Towards Predictive Cost Controlling of Cyber Physical Production Systems.- Towards Autonomously Navigating and Cooperating Vehicles in Cyber-Physical Production Systems.




Autore

Prof. Dr. Oliver Niggemann ist seit November 2008 Mitglied des inIT. Er vertritt das Fachgebiet Embedded Software Engineering in der Lehre und forscht im inIT in den Bereichen Verteilte Echtzeit-Software und der Analyse und Diagnose verteilter Systeme. Gleichzeitig forscht Prof. Niggemann im Fraunhofer-Anwendungszentrum Industrial Automation (INA) in Lemgo.

Prof. Dr.-Ing. Jürgen Beyerer ist in Personalunion Inhaber des Lehrstuhls für Interaktive Echtzeitsysteme an der Fakultät für Informatik und Leiter des Fraunhofer IOSB. Die Schwerpunkte in Forschung und Lehre am Lehrstuhl für Interaktive Echtzeitsysteme liegen auf den Themen: automatische Sichtprüfung und Bildauswertung, Mustererkennung und Signal- und Informationsverarbeitung.











Altre Informazioni

ISBN:

9783662488362

Condizione: Nuovo
Collana: Technologien für die intelligente Automation
Dimensioni: 240 x 168 mm
Formato: Brossura
Illustration Notes:VI, 121 p. 12 illus. in color.
Pagine Arabe: 121
Pagine Romane: vi


Dicono di noi