libri scuola books Fumetti ebook dvd top ten sconti 0 Carrello


Torna Indietro

duistermaat j.j.; kolk johan a.c. - lie groups
Zoom

Lie Groups

;




Disponibilità: Normalmente disponibile in 15 giorni


PREZZO
70,98 €
NICEPRICE
67,43 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Editore:

Springer

Pubblicazione: 12/1999
Edizione: 2000





Trama

This book is devoted to an exposition of the theory of finite-dimensional Lie groups and Lie algebras, which is a beautiful and central topic in modern mathematics. At the end of the nineteenth century this theory came to life in the works of Sophus Lie. It had its origins in Lie's idea of applying Galois theory to differential equations and in Klein's "Erlanger Programm" of treat­ ing symmetry groups as the fundamental objects in geometry. Lie's approach to many problems of analysis and geometry was mainly local, that is, valid in local coordinate systems only. At the beginning of the twentieth century E. Cartan and Weyl began a systematic treatment of the global aspects of Lie's theory. Since then this theory has ramified tremendously and now, as the twentieth century is coming to a close, its concepts and methods pervade mathematics and theoretical physics. Despite the plethora of books devoted to Lie groups and Lie algebras we feel there is justification for a text that puts emphasis on Lie's principal idea, namely, geometry treated by a blend of algebra and analysis. Lie groups are geometrical objects whose structure can be described conveniently in terms of group actions and fiber bundles. Therefore our point of view is mainly differential geometrical. We have made no attempt to discuss systematically the theory of infinite-dimensional Lie groups and Lie algebras, which is cur­ rently an active area of research. We now give a short description of the contents of each chapter.




Sommario

1. Lie Groups and Lie Algebras.- 1.1 Lie Groups and their Lie Algebras.- 1.2 Examples.- 1.3 The Exponential Map.- 1.4 The Exponential Map for a Vector Space.- 1.5 The Tangent Map of Exp.- 1.6 The Product in Logarithmic Coordinates.- 1.7 Dynkin’s Formula.- 1.8 Lie’s Fundamental Theorems.- 1.9 The Component of the Identity.- 1.10 Lie Subgroups and Homomorphisms.- 1.11 Quotients.- 1.12 Connected Commutative Lie Groups.- 1.13 Simply Connected Lie Groups.- 1.14 Lie’s Third Fundamental Theorem in Global Form.- 1.15 Exercises.- 1.16 Notes.- 2. Proper Actions.- 2.1 Review.- 2.2 Bochner’s Linearization Theorem.- 2.3 Slices.- 2.4 Associated Fiber Bundles.- 2.5 Smooth Functions on the Orbit Space.- 2.6 Orbit Types and Local Action Types.- 2.7 The Stratification by Orbit Types.- 2.8 Principal and Regular Orbits.- 2.9 Blowing Up.- 2.10 Exercises.- 2.11 Notes.- 3. Compact Lie Groups.- 3.0 Introduction.- 3.1 Centralizers.- 3.2 The Adjoint Action.- 3.3 Connectedness of Centralizers.- 3.4 The Group of Rotations and its Covering Group.- 3.5 Roots and Root Spaces.- 3.6 Compact Lie Algebras.- 3.7 Maximal Tori.- 3.8 Orbit Structure in the Lie Algebra.- 3.9 The Fundamental Group.- 3.10 The Weyl Group as a Reflection Group.- 3.11 The Stiefel Diagram.- 3.12 Unitary Groups.- 3.13 Integration.- 3.14 The Weyl Integration Theorem.- 3.15 Nonconnected Groups.- 3.16 Exercises.- 3.17 Notes.- 4. Representations of Compact Groups.- 4.0 Introduction.- 4.1 Schur’s Lemma.- 4.2 Averaging.- 4.3 Matrix Coefficients and Characters.- 4.4 G-types.- 4.5 Finite Groups.- 4.6 The Peter-Weyl Theorem.- 4.7 Induced Representations.- 4.8 Reality.- 4.9 Weyl's Character Formula.- 4.10 Weight Exercises.- 4.11 Highest Weight Vectors.- 4.12 The Borel-Weil Theorem.- 4.13 The Nonconnected Case.- 4.14 Exercises.- 4.15Notes.- References for Chapter Four.- Appendices and Index.- A Appendix: Some Notions from Differential Geometry.- B Appendix: Ordinary Differential Equations.- References for Appendix.




Autore

Hans Duistermaat was a geometric analyst, who unexpectedly passed away in March 2010. His research encompassed many different areas in mathematics: ordinary differential equations, classical mechanics, discrete integrable systems, Fourier integral operators and their application to partial differential equations and spectral problems, singularities of mappings, harmonic analysis on semisimple Lie groups, symplectic differential geometry, and algebraic geometry. He was (co-)author of eleven books.

Duistermaat was affiliated to the Mathematical Institute of Utrecht University since 1974 as a Professor of Pure and Applied Mathematics. During the last five years he was honored with a special professorship at Utrecht University endowed by the Royal Netherlands Academy of Arts and Sciences. He was also a member of the Academy since 1982. He had 23 PhD students.

 

Johan Kolk published about harmonic analysis on semisimple Lie groups, the theory of distributions, and classical analysis. Jointly with Duistermaat he has written four books: besides the present one, on Lie groups, and on multidimensional real analysis. Until his retirement in 2009, he was affiliated to the Mathematical Institute of Utrecht University. For more information, see http://www.staff.science.uu.nl/~kolk0101/











Altre Informazioni

ISBN:

9783540152934

Condizione: Nuovo
Collana: Universitext
Dimensioni: 235 x 155 mm
Formato: Brossura
Illustration Notes:VIII, 344 p.
Pagine Arabe: 344
Pagine Romane: viii


Dicono di noi