libri scuola books Fumetti ebook dvd top ten sconti 0 Carrello


Torna Indietro

green peter j; hjort nils lid; richardson sylvia - highly structured stochastic systems
Zoom

Highly Structured Stochastic Systems

; ;




Disponibilità: Normalmente disponibile in 20 giorni
A causa di problematiche nell'approvvigionamento legate alla Brexit sono possibili ritardi nelle consegne.


PREZZO
189,98 €
NICEPRICE
180,48 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Pubblicazione: 05/2003





Trama

Highly Structured Stochastic Systems (HSSS) is a modern strategy for building statistical models for challenging real-world problems, for computing with them, and for interpreting the resulting inferences. Complexity is handled by working up from simple local assumptions in a coherent way, and that is the key to modelling, computation, inference and interpretation; the unifying framework is that of Bayesian hierarchical models. The aim of this book is to make recent developments in HSSS accessible to a general statistical audience. Graphical modelling and Markov chain Monte Carlo (MCMC) methodology are central to the field, and in this text they are covered in depth. The chapters on graphical modelling focus on causality and its interplay with time, the role of latent variables, and on some innovative applications. Those on Monte Carlo algorithms include discussion of the impact of recent theoretical work on the evaluation of performance in MCMC, extensions to variable dimension problems, and methods for dynamic problems based on particle filters. Coverage of these underlying methodologies is balanced by substantive areas of application - in the areas of spatial statistics (with epidemiological, ecological and image analysis applications) and biology (including infectious diseases, gene mapping and evolutionary genetics). The book concludes with two topics (model criticism and Bayesian nonparametrics) that seek to challenge the parametric assumptions that otherwise underlie most HSSS models. Altogether there are 15 topics in the book, and for each there is a substantial article by a leading author in the field, and two invited commentaries that complement, extend or discuss the main article, and should be read in parallel. All authors are distinguished researchers in the field, and were active participants in an international research programme on HSSS. This is the 27th volume in the Oxford Statistical Science Series, which includes texts and monographs covering many topics of current research interest in pure and applied statistics. These texts focus on topics that have been at the forefront of research interest for several years. Other books in the series include: J.Durbin and S.J.Koopman: Time series analysis by State Space Models; Peter J. Diggle, Patrick Heagerty, Kung-Yee Liang, Scott L. Zeger: Analysis of Longitudinal Data 2/e; J.K. Lindsey: Nonlinear Models in Medical Statistics; Peter J. Green, Nils L. Hjort & Sylvia Richardson: Highly Structured Stochastic Systems; Margaret S. Pepe: Statistical Evaluation of Medical Tests.




Sommario

1 - Some modern applications of graphical models
2 - Causal inference using influence diagrams: the problem of partial compliance
3 - Causal inference via ancestral graph models
4 - Causality and graphical models in times series analysis
5 - Linking theory and practice of MCMC
6 - Trans-dimensional Markov chain Monte Carlo
7 - Particle filtering methods for dynamic and static Bayesian problems
8 - Spatial models in epidemiological applications
9 - Spatial hierarchical Bayesian modeld in ecological applications
10 - Advances in Bayesian image analysis
11 - Preventing epidemics in heterogeneous environments
12 - Genetic linkage analysis using Markov chain Monte Carlo techniques
13 - The genealogy of neutral mutation
14 - HSSS model criticism
15 - Topics in nonparametric Bayesian statistics




Autore

Peter J. Green Professor of Statistics, University of Bristol Nils Lid Hjort Professor of mathematical statistics, University of Oslo Sylvia Richardson Professor of Biostatistics, Imperial College










Altre Informazioni

ISBN:

9780198510550

Condizione: Nuovo
Collana: Oxford Statistical Science Series (0-19-961199-8)
Dimensioni: 240 x 32.0 x 159 mm Ø 874 gr
Formato: Copertina rigida
Illustration Notes:numerous figures
Pagine Arabe: 532


Dicono di noi





Per noi la tua privacy è importante


Il sito utilizza cookie ed altri strumenti di tracciamento che raccolgono informazioni dal dispositivo dell’utente. Oltre ai cookie tecnici ed analitici aggregati, strettamente necessari per il funzionamento di questo sito web, previo consenso dell’utente possono essere installati cookie di profilazione e marketing e cookie dei social media. Cliccando su “Accetto tutti i cookie” saranno attivate tutte le categorie di cookie. Per accettare solo deterninate categorie di cookie, cliccare invece su “Impostazioni cookie”. Chiudendo il banner o continuando a navigare saranno installati solo cookie tecnici. Per maggiori dettagli, consultare la Cookie Policy.

Impostazioni cookie
Rifiuta Tutti i cookie
Accetto tutti i cookie
X