
Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.
Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente
This book introduces pattern mining by presenting various pattern mining techniques and giving hands-on experience with each technique. Pattern mining is a popular data mining technique with many real-world applications, and involves discovering all user interest-based patterns that may exist in a database. Several models and numerous algorithms were described in the literature to find these patterns in binary databases, quantitative databases, uncertain databases, and streams. Since the lack of a Python toolkit containing these algorithms has limited the wide adaptability of pattern-mining techniques, the author developed Pattern Mining (PAMI) Python library, which currently contains 80+ algorithms to discover useful patterns in transactional databases, temporal databases, quantitative databases, and graphs.
The book consists of three main parts:
· Introduction: The first chapter introduces big data, types of learning techniques, and the importance of pattern mining. The second chapter introduces the PAMI library, its organizational structure, installation, and usage.
· Pattern mining algorithms and examples: The following chapters present the state-of-the-art techniques for discovering user interest-based patterns in (1) transactional databases, (2) temporal databases, (3) quantitative databases, (4) uncertain databases, (5) sequential databases, and (6) graphs.
· Applications: The book concludes with several applications, where the predicted knowledge using TensorFlow and PyTorch was transformed into a database to discover future trends or patterns.
Part I Fundamentals 1 Getting Started with PAMI: Introduction, Maintenance, and Usage.- 2 Handling Big Data: Classification, Storage, and Processing Techniques.- 3 Transactional Databases: Representation, Creation, and Statistics.- 4 Pattern Discovery in Transactional Databases.- 5 Temporal Databases: Representation, Creation, and Statistics.- 6 Pattern Discovery in Temporal Databases.- 7 Spatial Databases: Representation, Creation, and Statistics.- 8 Pattern Discovery in Spatial Databases.- 9 Utility Databases: Representation, Creation, and Statistics.- 10 Pattern Discovery in Utility Databases.- 11 Sequence Databases: Representation, Creation, and Statistics.- 12 Pattern Discovery in Sequence Databases.- Part II Advanced Concepts 13 Mining Symbolic Sequences.- 14 Pattern Discovery in Fuzzy Databases.- 15 Knowledge Discovery in Uncertain Databases.- 16 Finding Useful Patterns in Graph Databases.- Part III Applications 17 Discovering Air Pollution Patterns through the KDD Process.- 18 Discovering Futuristic Pollution Patterns Using Forecasting and Pattern Mining.
Rage Uday Kiran is an associate professor in the Division of Information Systems at The University of Aizu, Japan.


Il sito utilizza cookie ed altri strumenti di tracciamento che raccolgono informazioni dal dispositivo dell’utente. Oltre ai cookie tecnici ed analitici aggregati, strettamente necessari per il funzionamento di questo sito web, previo consenso dell’utente possono essere installati cookie di profilazione e marketing e cookie dei social media. Cliccando su “Accetto tutti i cookie” saranno attivate tutte le categorie di cookie. Per accettare solo deterninate categorie di cookie, cliccare invece su “Impostazioni cookie”. Chiudendo il banner o continuando a navigare saranno installati solo cookie tecnici. Per maggiori dettagli, consultare la Cookie Policy.