libri scuola books Fumetti ebook dvd top ten sconti 0 Carrello


Torna Indietro

look burt g. - handbook of geotechnical investigation and design tables
Zoom

Handbook of Geotechnical Investigation and Design Tables Second Edition




Disponibilità: Normalmente disponibile in 20 giorni
A causa di problematiche nell'approvvigionamento legate alla Brexit sono possibili ritardi nelle consegne.


PREZZO
123,98 €
NICEPRICE
117,78 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Editore:

CRC Press

Pubblicazione: 02/2014
Edizione: Edizione nuova, 2° edizione





Note Editore

This practical handbook of properties for soils and rock contains in a concise tabular format the key issues relevant to geotechnical investigations, assessments and designs in common practice. There are brief notes on the application of the tables. These data tables are compiled for experienced geotechnical professionals who require a reference document to access key information. There is an extensive database of correlations for different applications. The book should provide a useful bridge between soil and rock mechanics theory and its application to practical engineering solutions. The initial chapters deal with the planning of the geotechnical investigation and the classification of the soil and rock properties, after which some of the more used testing is covered. Later chapters show the reliability and correlations that are used to convert that data in the interpretative and assessment phase of the project. The final chapters apply some of these concepts to geotechnical design. The emphasis throughout is on application to practice. This book is intended primarily for practicing geotechnical engineers working in investigation, assessment and design, but should provide a useful supplement for postgraduate courses. It evolved from the need to have a "go to" reference book which has both breadth and depth of information to apply immediately to projects. To keep to a handbook size one has to compress/restrict details to a few key bullet points – but a comprehensive reference list provides the "appendix" for additional information if required. This 2nd edition keeps to that format but contains updated information and adjustments that take into account feedback received since initial publication.




Sommario

1 Site investigation 1.1 Geotechnical engineer 1.2 Developing models 1.3 Geotechnical involvement 1.4 Geotechnical requirements for the different project phases 1.5 Relevance of scale 1.6 Planning of site investigation 1.7 Planning of groundwater investigation 1.8 Level of investigation 1.9 Planning prior to ground truthing 1.10 Extent of investigation 1.11 Site investigation for driven piles to rock 1.12 Volume sampled 1.13 Relative risk ranking of developments 1.14 Sample amount 1.15 Sample disturbance 1.16 Sample size 1.17 Quality of site investigation 1.18 Costing of investigation 1.19 Site investigation costs 1.20 The business of site investigation 2 Soil classification and description 2.1 Important information 2.2 Soil borehole record 2.3 Borehole record in the field 2.4 Drilling information 2.5 Water level 2.6 Soil type 2.7 Major and minor components of soil descriptions 2.8 Field guide identification 2.9 Sedimentation test 2.10 Unified soil classification 2.11 Particle description 2.12 Gradings 2.13 Colour 2.14 Soil plasticity 2.15 Atterberg limits 2.16 Consistency of cohesive soils 2.17 Consistency of non-cohesive soils 2.18 Structure2.19 Moisture content 2.20 Origin 2.21 Comparison of characteristics between residual and transported soils 2.22 Classification of residual soils by its primary mode of occurrence 3 Rock classification 3.1 Important rock information 3.2 Rock description 3.3 Field rock core log 3.4 Drilling information 3.5 Rock weathering 3.6 Colour 3.7 Rock structure 3.8 Rock quality designation 3.9 Rock strength 3.10 Rock hardness 3.11 Discontinuity scale effects 3.12 Rock defects spacing 3.13 Rock defects description 3.14 Rock defect symbols 3.15 Sedimentary and pyroclastic rock types 3.16 Metamorphic and igneous rock types 4 Field sampling and testing 4.1 Types of sampling 4.2 Boring types 4.3 Field sampling 4.4 Field testing 4.5 Comparison of in situ tests 4.6 Standard penetration test in soils 4.7 Standard penetration test in rock 4.8 Overburden correction factors to SPT result 4.9 Equipment and borehole correction factors for SPT result 4.10 Cone penetration test 4.11 Dilatometer 4.12 Pressuremeter test 4.13 Vane shear 4.14 Vane shear correction factor 4.15 Dynamic cone penetrometer tests 4.16 Light weight falling deflectometer 4.17 Clegg impact soil tester 4.18 Surface strength from site walk over 4.19 Surface strength from vehicle drive over 4.20 Operation of earth moving plant 5 Soil strength parameters from classification and testing 5.1 Errors in measurement 5.2 Clay strength from pocket penetrometer 5.3 Clay strength from SPT data 5.4 Residual soils strength from SPT data 5.5 Clean sand strength from SPT data 5.6 Fine and coarse sand strength from SPT data 5.7 Effect of aging 5.8 Effect of angularity and grading on strength 5.9 Critical state angles in sands 5.10 Peak and critical state angles in sands 5.11 Strength parameters from DCP data 5.12 CBR value from soil classification test 5.13 CBR value from DCP data 5.14 CBR values from DCP data specific to soil type 5.15 Allowable bearing capacity from DCP tests 5.16 Soil classification from cone penetration tests 5.17 Soil type from friction ratios 5.18 Clay parameters from cone penetration tests 5.19 Clay strength from cone penetration tests 5.20 Simplified sand strength assessment from cone penetration tests 5.21 Soil type from Dilatometer test 5.22 Lateral soil pressure from Dilatometer test 5.23 Soil strength of sand from Dilatometer test 5.24 Clay strength from effective overburden 5.25 Variation of undrained strength ratio 6 Rock strength parameters from classification and testing 6.1 Rock strength 6.2 Typical refusal levels of drilling rig 6.3 Parameters from drilling rig used 6.4 Field evaluation of rock strength 6.5 Rock strength from point load index values 6.6 Strength from Schmidt hammer 6.7 Strength assessment from RQD 6.8 Relative change in strength between rock weathering grades 6.9 Parameters from rock weathering 6.10 Rock classification 6.11 Rock strength from slope stability 6.12 Typical field geologist’s rock strength 6.13 Typical engineering geology rock strengths 6.14 Relative strength – combined considerations 6.15 Parameters from rock type 6.16 Rock durability 6.17 Material use 7 Soil properties and state of the soil 7.1 Soil behaviour 7.2 State of the soil 7.3 Soil weight 7.4 Significance of colour 7.5 Plasticity characteristics of common clay minerals 7.6 Weighted plasticity index 7.7 Effect of grading 7.8 Effective friction of granular soils 7.9 Effective strength of cohesive soils 7.10 Over-consolidation ratio 7.11 Pre-consolidation stress from cone penetration testing 7.12 Pre-consolidation stress from Dilatometer 7.13 Pre-consolidation stress from shear wave velocity 7.14 Over-consolidation ratio from Dilatometer 7.15 Lateral soil pressure from Dilatometer test 7.16 Over consolidation ratio from undrained strength ratio and friction angles 7.17 Over-consolidation ratio from undrained strength ratio 7.18 Sign posts along the soil suction pF scale 7.19 Soil suction values for different materials 7.20 Capillary rise 7.21 Equilibrium soil suctions in Australia 7.22 Effect of climate on soil suction change 7.23 Effect of climate on active zones 7.24 Compaction concepts 7.25 Effect of compaction on suction 8 Permeability and its influence 8.1 Typical values of permeability 8.2 Permeability equivalents 8.3 Comparison of permeability with various engineering materials 8.4 Permeability based on grain size 8.5 Permeability based on soil classification 8.6 Permeability from dissipation tests 8.7 Effect of pressure on permeability 8.8 Effect of fines on permeability 8.9 Permeability of compacted clays 8.10 Effect of moulding water content on permeability 8.11 Permeability of untreated and asphalt treated aggregates 8.12 Dewatering methods applicable to various soils 8.13 Radius of influence for drawdown 8.14 Typical hydrological values 8.15 Relationship between coefficients of permeability and consolidation 8.16 Typical values of coefficient of consolidation 8.17 Variation of coefficient of consolidation with liquid limit 8.18 Coefficient of consolidation from dissipation tests 8.19 Time factors for consolidation 8.20 Time required for drainage of deposits 8.21 Estimation of permeability of rock 8.22 Effect of joints on rock permeability 8.23 Lugeon tests in rock 9 Rock properties 9.1 General engineering properties of common rocks 9.2 Rock weight 9.3 Rock minerals 9.4 Silica in igneous rocks 9.5 Hardness scale 9.6 Rock hardness 9.7 Influence of properties on bored pile 9.8 Mudstone–shale classification based on mineral proportion 9.9 Relative change in rock property due to discontinuity 9.10 Rock strength due to failure angle 9.11 Rock defects and rock quality designation 9.12 Rock laboratory to field strength 9.13 Rock shear strength and friction angles of specific materials 9.14 Rock shear strength from RQD values 9.15 Rock shear strength and friction angles based on geologic origin 9.16 Friction angles of rocks joints 9.17 Asperity rock friction angles 9.18 Shear strength of filled joints 10 Material and testing variability with risk assessment 10.1 Variability of materials 10.2 Variability of soils 10.3 Variability of in-situ tests 10.4 Soil variability from laboratory testing 10.5 Guidelines for inherent soil variability 10.6 Compaction testing 10.7 Guidelines for compaction control testing 10.8 Subgrade and road material variability 10.9 Deflection testing for pavements 10.10 Distribution functions 10.11 Distribution functions for rock strength 10.12 Effect of distribution functions on rock strength 10.13 CBR values for a linear (transportation) project 10.14 Point load index values for a vertical linear (bridge) project 10.15 Variability in design and construction process 110.16 Prediction variability for experts compared with industry practice 10.17 Variability in selecting design values 10.18 Tolerable risk for new and existing slopes 10.19




Autore

Burt Look is a practicing consulting geotechnical engineer. He obtained his first degree in Civil Engineering and his Master’s degree in Soil Mechanics and Engineering Seismology at the Imperial College of Science and Technology, University of London. He completed his PhD at The University of Queensland.and he is a Fellow of the Institute of Engineers, Australia. He is currently a Geotechnical Practice Leader at Sinclair Knight Merz. He was formerly a Principal and the Geotechnical Knowledge and Service Delivery Leader at Connell Wagner (now Aurecon). His key role is in the planning and assessment of geotechnical investigations and its implementation into the design. He lectures short courses in industry for Education Engineers Australia to practicing professionals. His research is focused on applications in industry practice and he supervises theses at both The University of Queensland and Queensland University of Technology, Australia.










Altre Informazioni

ISBN:

9781138001398

Condizione: Nuovo
Dimensioni: 9.75 x 6.75 in Ø 1.90 lb
Formato: Brossura
Illustration Notes:40 b/w images
Pagine Arabe: 418


Dicono di noi





Per noi la tua privacy è importante


Il sito utilizza cookie ed altri strumenti di tracciamento che raccolgono informazioni dal dispositivo dell’utente. Oltre ai cookie tecnici ed analitici aggregati, strettamente necessari per il funzionamento di questo sito web, previo consenso dell’utente possono essere installati cookie di profilazione e marketing e cookie dei social media. Cliccando su “Accetto tutti i cookie” saranno attivate tutte le categorie di cookie. Per accettare solo deterninate categorie di cookie, cliccare invece su “Impostazioni cookie”. Chiudendo il banner o continuando a navigare saranno installati solo cookie tecnici. Per maggiori dettagli, consultare la Cookie Policy.

Impostazioni cookie
Rifiuta Tutti i cookie
Accetto tutti i cookie
X