home libri books Fumetti ebook dvd top ten sconti 0 Carrello

Torna Indietro

berthold michael r.; borgelt christian; höppner frank; klawonn frank; silipo rosaria - guide to intelligent data science

Guide to Intelligent Data Science How to Intelligently Make Use of Real Data

; ; ; ;

Disponibilità: Normalmente disponibile in 15 giorni

61,98 €
58,88 €

Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.

Pagabile anche con 18App Bonus Cultura e Carta del Docente

Facebook Twitter Aggiungi commento

Spese Gratis


Lingua: Inglese


Pubblicazione: 08/2021
Edizione: 2nd ed. 2020


Each passing year bears witness to the development of ever more powerful computers, increasingly fast and cheap storage media, and even higher bandwidth data connections. This makes it easy to believe that we can now – at least in principle – solve any problem we are faced with so long as we only have enough data. Yet this is not the case. Although large databases allow us to retrieve many different single pieces of information and to compute simple aggregations, general patterns and regularities often go undetected. Furthermore, it is exactly these patterns, regularities and trends that are often most valuable. To avoid the danger of “drowning in information, but starving for knowledge” the branch of research known as data analysis has emerged, and a considerable number of methods and software tools have been developed. However, it is not these tools alone but the intelligent application of human intuition in combination with computational power, of sound background knowledge with computer-aided modeling, and of critical reflection with convenient automatic model construction, that results in successful intelligent data analysis projects. Guide to Intelligent Data Analysis provides a hands-on instructional approach to many basic data analysis techniques, and explains how these are used to solve data analysis problems. Topics and features: guides the reader through the process of data analysis, following the interdependent steps of project understanding, data understanding, data preparation, modeling, and deployment and monitoring; equips the reader with the necessary information in order to obtain hands-on experience of the topics under discussion; provides a review of the basics of classical statistics that support and justify many data analysis methods, and a glossary of statistical terms; includes numerous examples using R and KNIME, together with appendices introducing the open source software; integrates illustrations and case-study-style examples to support pedagogical exposition. This practical and systematic textbook/reference for graduate and advanced undergraduate students is also essential reading for all professionals who face data analysis problems. Moreover, it is a book to be used following one’s exploration of it. Dr. Michael R. Berthold is Nycomed-Professor of Bioinformatics and Information Mining at the University of Konstanz, Germany. Dr. Christian Borgelt is Principal Researcher at the Intelligent Data Analysis and Graphical Models Research Unit of the European Centre for Soft Computing, Spain. Dr. Frank Höppner is Professor of Information Systems at Ostfalia University of Applied Sciences, Germany. Dr. Frank Klawonn is a Professor in the Department of Computer Science and Head of the Data Analysis and Pattern Recognition Laboratory at Ostfalia University of Applied Sciences, Germany. He is also Head of the Bioinformatics and Statistics group at the Helmholtz Centre for Infection Research, Braunschweig, Germany.



Practical Data Analysis: An Example

Project Understanding

Data Understanding

Principles of Modeling

Data Preparation

Finding Patterns

Finding Explanations

Finding Predictors

Evaluation and Deployment

The Labelling Problem

Appendix A: Statistics

Appendix B: KNIME


Prof. Dr. Michael R. Berthold is Professor for Bioinformatics and Information Mining in the Department of Computer Science at the University of Konstanz, Germany.

Prof. Dr. Christian Borgelt is Professor for Data Science in the departments of Mathematics and Computer Sciences at the Paris Lodron University of Salzburg, Austria; he also co-authored the Springer textbook, Computational Intelligence.

Prof. Dr. Frank Höppner is Professor of Information Engineering in the Department of Computer Science at Ostfalia University of Applied Sciences, Wolfenbüttel, Germany.

Prof. Dr. Frank Klawonn is Professor for Data Analysis and Pattern Recognition at the same institution and head of the Biostatistics Group at the Helmholtz Centre for Infection Research, Braunschweig, Germany; he has authored the Springer textbook, Introduction to Computer Graphics.

Dr. Rosaria Silipo is a Principal Data Scientist and Head of Evangelism at KNIME AG, Zurich, Switzerland.

Altre Informazioni



Condizione: Nuovo
Collana: Texts in Computer Science
Dimensioni: 235 x 155 mm Ø 664 gr
Formato: Brossura
Illustration Notes:XIII, 420 p. 179 illus., 122 illus. in color.
Pagine Arabe: 420
Pagine Romane: xiii

Dicono di noi