home libri books Fumetti ebook dvd top ten sconti 0 Carrello


Torna Indietro

bannikova elena; capaccioli massimo - foundations of celestial mechanics

Foundations of Celestial Mechanics

;




Disponibilità: Normalmente disponibile in 15 giorni


PREZZO
97,98 €
NICEPRICE
93,08 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Editore:

Springer

Pubblicazione: 12/2022
Edizione: 1st ed. 2022





Trama

This book provides an introduction to classical celestial mechanics. It is based on lectures delivered by the authors over many years at both Padua University (MC) and V.N. Karazin Kharkiv National University (EB). The book aims to provide a mathematical description of the gravitational interaction of celestial bodies. The approach to the problem is purely formal. It allows the authors to write equations of motion and solve them to the greatest degree possible, either exactly or by approximate techniques, when there is no other way. The results obtained provide predictions that can be compared with the observations. Five chapters are supplemented by appendices that review certain mathematical tools, deepen some questions (so as not to interrupt the logic of the mainframe with heavy technicalities), give some examples, and provide an overview of special functions useful here, as well as in many other fields of physics. The authors also present the original investigation of torus potential. This book is aimed at senior undergraduate students of physics or astrophysics, as well as graduate students undertaking a master’s degree or Ph.D.





Sommario

1 N-body problem 11
1.1 Self-gravitating systems of massive points . . . . . . . . . . . . . 14
1.2 Fundamental rst integrals . . . . . . . . . . . . . . . . . . . . . 17
1.2.1 Conservation of momentum . . . . . . . . . . . . . . . . 18
1.2.2 Angular momentum conservation . . . . . . . . . . . . . 21
1.2.3 Energy conservation . . . . . . . . . . . . . . . . . . . . 23
1.3 Barycentric and relative systems . . . . . . . . . . . . . . . . . . 25
1.4 N-body problem solution . . . . . . . . . . . . . . . . . . . . . . 26
1.5 Virial theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2 The two-body problem 31
2.1 Motion about center of mass . . . . . . . . . . . . . . . . . . . . 34
2.2 Reduction to the plane . . . . . . . . . . . . . . . . . . . . . . . 38
2.3 E ective potential energy . . . . . . . . . . . . . . . . . . . . . 40
2.4 The trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.5 Laplace{Runge{Lenz vector . . . . . . . . . . . . . . . . . . . . 43
2.6 Geometry of conics . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.6.1 Ellipse . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.6.2 Parabola . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.6.3 Hyperbola . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.7 Conic orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.7.1 Elliptical orbit . . . . . . . . . . . . . . . . . . . . . . . . 56
2.7.2 Parabolic orbit . . . . . . . . . . . . . . . . . . . . . . . 61
2.7.3 Hyperbolic orbit . . . . . . . . . . . . . . . . . . . . . . 62
2.8 Keplerian elements . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.9 Ephemerides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.10 The method of Laplace . . . . . . . . . . . . . . . . . . . . . . . 70
2.11 Ballistics and space ight . . . . . . . . . . . . . . . . . . . . . . 80
3 The three-body problem 85
3.1 Stationary solutions . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.1.1 Collinear solutions . . . . . . . . . . . . . . . . . . . . . 92
3.1.2 Triangular solutions . . . . . . . . . . . . . . . . . . . . . 94
3.2 The restricted problem . . . . . . . . . . . . . . . . . . . . . . . 97
3.3 Zero{velocity curves . . . . . . . . . . . . . . . . . . . . . . . . 101
3.3.1 The (x; y) plane . . . . . . . . . . . . . . . . . . . . . . 102
3.3.2 The (x; z) plane . . . . . . . . . . . . . . . . . . . . . . . 104
3.3.3 The (y; z) plane . . . . . . . . . . . . . . . . . . . . . . . 105
3.4 About the Lagrangian points . . . . . . . . . . . . . . . . . . . . 107
3.5 Stability of the Lagrangian points . . . . . . . . . . . . . . . . . 108
3.5.1 The equilibrium conditions . . . . . . . . . . . . . . . . . 108
3.5.2 Collinear solutions . . . . . . . . . . . . . . . . . . . . . 110
3.5.3 Triangular solutions . . . . . . . . . . . . . . . . . . . . . 111
3.6 Variation of the elements . . . . . . . . . . . . . . . . . . . . . . 113
3.6.1 Variation of the orientation elements . . . . . . . . . . . 116
3.6.2 Variation of the geometric elements . . . . . . . . . . . . 118
4 Analytical mechanics 125
4.1 Lagrange function . . . . . . . . . . . . . . . . . . . . . . . . . . 127
4.2 Generalized coordinates . . . . . . . . . . . . . . . . . . . . . . 129
4.3 Lagrange equations . . . . . . . . . . . . . . . . . . . . . . . . . 131
4.4 Hamilton function . . . . . . . . . . . . . . . . . . . . . . . . . . 133
4.5 Canonical equations . . . . . . . . . . . . . . . . . . . . . . . . . 137
4.6 Constants of motion . . . . . . . . . . . . . . . . . . . . . . . . 138
4.7 Elliptical orbit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
4.8 Canonical transformations . . . . . . . . . . . . . . . . . . . . . 150
4.8.1 Characteristic function . . . . . . . . . . . . . . . . . . . 151
4.8.2 Forms of the characteristic function . . . . . . . . . . . . 154
4.8.3 Canonicity conditions . . . . . . . . . . . . . . . . . . . . 155
4.8.4 Canonical invariants . . . . . . . . . . . . . . . . . . . . 161
4.8.5 In nitesimal canonical transformations . . . . . . . . . . 163
4.8.6 Canonical systems of motion constants . . . . . . . . . . 168
4.8.7 Canonical elements for elliptical orbit . . . . . . . . . . . 175
4.9 Jacobi equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
4.9.1 Jacobi equation: special cases . . . . . . . . . . . . . . . 182
4.9.2 2{body problem with Hamilton{Jacoby . . . . . . . . . . 186
4.10 Element variation . . . . . . . . . . . . . . . . . . . . . . . . . . 191
4.10.1 Constant variation method: an example . . . . . . . . . 194
4.11 Apsidal precession . . . . . . . . . . . . . . . . . . . . . . . . . 197
4.12 Orbits in General Relativity . . . . . . . . . . . . . . . . . . . . 200
5 Gravitational potential 207
5.1 Gauss theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
5.2 Theorens of Poisson and Laplace . . . . . . . . . . . . . . . . . 210
5.3 Potential of a massive point . . . . . . . . . . . . . . . . . . . . 212
5.4 Spherical bodies . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
5.5 Legendre equation . . . . . . . . . . . . . . . . . . . . . . . . . 221
5.5.1 Spherical harmonics . . . . . . . . . . . . . . . . . . . . 221
5.5.2 Legendre equation and spherical harmonics . . . . . . . . 223
5.5.3 Associated Legendre function . . . . . . . . . . . . . . . 225
5.5.4 Spherical harmonics of integer degree . . . . . . . . . . . 227
5.6 Expansion of the potential . . . . . . . . . . . . . . . . . . . . . 230
5.7 Thin layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
5.8 Homogeneous spheroid . . . . . . . . . . . . . . . . . . . . . . . 235
5.9 Potential of a homogeneus ellipsoid . . . . . . . . . . . . . . . . 238
5.10 Ellipsoid: outer point potential . . . . . . . . . . . . . . . . . . 242
5.11 Potential: explicit form . . . . . . . . . . . . . . . . . . . . . . . 244
5.12 Earth distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
5.13 Potential with dominating body . . . . . . . . . . . . . . . . . . 249
5.14 Torus potential . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
A Spherical trigonometry elements 261
B Transformation formulas 267
C Vector operators 271
D The mirror theorem 275
E Kepler's equation 277
E.1 Lagrange's theorem . . . . . . . . . . . . . . . . . . . . . . . . . 277
E.2 Fourier's theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 279
E.3 Numerical solutions . . . . . . . . . . . . . . . . . . . . . . . . . 280
F Hydrogen atom 283
F.1 Bohr's atom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
F.2 Quantum approach . . . . . . . . . . . . . . . . . . . . . . . . . 285
G Variation of constants 287
H Lagrange multipliers 291
H.1 Variation of constants . . . . . . . . . . . . . . . . . . . . . . . 292
I Visual binary orbits 295
J Three bodies: planarity 301
K Gravitational impact 305
L Poisson and Lagrange brackets 309
L.1 Poi




Autore

Elena Bannikova is Ukrainian Astrophysicists. She is working as Leading Scientific Researcher in the Institute of Radio Astronomy of the National Academy of Sciences of Ukraine. She is also Professor of the Department of Astronomy and Space Informatics (the Faculty of Physics) of V.N.Karazin Kharkiv National University where she is lecturing courses on Celestial Mechanics, Cosmology, Gravity: from Aristotle to black holes. Her fields of research are active galactic nuclei, gravitational potential, N-body simulations, gravitational lensing. She is co-investigator of some national projects including the recent one on “Astrophysical Relativistic Galactic Objects (ARGO): the life cycle of active nucleus”. In 2021 she has been awarded the title of “Knight” by the President of the Italian Republic.

Massimo Capaccioli is Italian Astrophysicist. He has served as Professor of astronomy at the Universities of Padua and then of Naples Federico II, where he is currently Emeritus. The results of his studies, dealing mainly with the dynamics and evolution of stellar systems and the observational cosmology, are presented in over 550 scientific articles in international journals. For a long time director of the Capodimonte Astronomical Observatory in Naples, he has conceived and managed, in synergy with the European Southern Observatory (ESO), the construction of the VLT Survey Telescope (VST), one of the largest reflectors fully dedicated to astronomical surveys. He has chaired the Italian Astronomical Society (SAIt) for a decade and for a three-year turn the National Society of Sciences, Letters, and Arts in Naples. He has collaborated with various Italian newspapers and with the national public broadcasting company of Italy (RAI). He has authored both university manuals and popular books. The list of his honors includes the title of Commander of the Italian Republic for scientific merits (2005), the honorary professorship granted by the University of Moscow Lomonosov in 2010, the honorary doctor-degrees by the Universities of Dubna (Russia, 2015), Kharkiv (Ukraine, 2017), and Pyatigorsk (Russia, 2019), and the medals Struve (2010; Russian Academy of Sciences), Tacchini (2013; SAIt), Karazin (2019; Karazin University, Kharkiv, Ukraine), and Gamov (2019: University of Odessa, Ukraine). He is Member of some academies in Italy and of the Academia Europaea, and since 2021 foreign Member of the National Academy of Sciences of Ukraine.











Altre Informazioni

ISBN:

9783031045752

Condizione: Nuovo
Collana: Graduate Texts in Physics
Dimensioni: 235 x 155 mm Ø 781 gr
Formato: Copertina rigida
Illustration Notes:XX, 392 p. 115 illus., 96 illus. in color.
Pagine Arabe: 392
Pagine Romane: xx


Dicono di noi