libri scuola books Fumetti ebook dvd top ten sconti 0 Carrello


Torna Indietro

di biase f. - fatou type theorems
Zoom

Fatou Type Theorems Maximal Functions and Approach Regions




Disponibilità: Normalmente disponibile in 10 giorni
A causa di problematiche nell'approvvigionamento legate alla Brexit sono possibili ritardi nelle consegne.


PREZZO
54,98 €
NICEPRICE
52,23 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Editore:

Birkhäuser

Pubblicazione: 01/2012
Edizione: 1998





Trama

A basic principle governing the boundary behaviour of holomorphic func­ tions (and harmonic functions) is this: Under certain growth conditions, for almost every point in the boundary of the domain, these functions ad­ mit a boundary limit, if we approach the bounda-ry point within certain approach regions. For example, for bounded harmonic functions in the open unit disc, the natural approach regions are nontangential triangles with one vertex in the boundary point, and entirely contained in the disc [Fat06]. In fact, these natural approach regions are optimal, in the sense that convergence will fail if we approach the boundary inside larger regions, having a higher order of contact with the boundary. The first theorem of this sort is due to J. E. Littlewood [Lit27], who proved that if we replace a nontangential region with the rotates of any fixed tangential curve, then convergence fails. In 1984, A. Nagel and E. M. Stein proved that in Euclidean half­ spaces (and the unit disc) there are in effect regions of convergence that are not nontangential: These larger approach regions contain tangential sequences (as opposed to tangential curves). The phenomenon discovered by Nagel and Stein indicates that the boundary behaviour of ho)omor­ phic functions (and harmonic functions), in theorems of Fatou type, is regulated by a second principle, which predicts the existence of regions of convergence that are sequentially larger than the natural ones.




Sommario

I Background.- 1 Prelude.- 2 Preliminary Results.- 3 The Geometric Contexts.- II Exotic Approach Regions.- 4 Approach Regions for Trees.- 5 Embedded Trees.- 6 Applications.- Notes.- List of Figures.- Guide to Notation.










Altre Informazioni

ISBN:

9781461274964

Condizione: Nuovo
Collana: Progress in Mathematics
Dimensioni: 235 x 155 mm
Formato: Brossura
Illustration Notes:XII, 154 p.
Pagine Arabe: 154
Pagine Romane: xii


Dicono di noi