libri scuola books Fumetti ebook dvd top ten sconti 0 Carrello


Torna Indietro

optimization; dan simon - evolutionary optimization algorithms
Zoom

Evolutionary Optimization Algorithms Biologically-Inspired and Population-Based Approaches to Computer Intelligence

;




Disponibilità: Normalmente disponibile in 20 giorni
A causa di problematiche nell'approvvigionamento legate alla Brexit sono possibili ritardi nelle consegne.


PREZZO
132,95 €
NICEPRICE
126,30 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Pubblicazione: 05/2013





Trama

A clear and lucid bottom-up approach to the basic principles of evolutionary algorithms

Evolutionary algorithms (EAs) are a type of artificial intelligence. EAs are motivated by optimization processes that we observe in nature, such as natural selection, species migration, bird swarms, human culture, and ant colonies.

This book discusses the theory, history, mathematics, and programming of evolutionary optimization algorithms. Featured algorithms include genetic algorithms, genetic programming, ant colony optimization, particle swarm optimization, differential evolution, biogeography-based optimization, and many others.

Evolutionary Optimization Algorithms:
* Provides a straightforward, bottom-up approach that assists the reader in obtaining a clear-but theoretically rigorous-understanding of evolutionary algorithms, with an emphasis on implementation
* Gives a careful treatment of recently developed EAs-including opposition-based learning, artificial fish swarms, bacterial foraging, and many others- and discusses their similarities and differences from more well-established EAs
* Includes chapter-end problems plus a solutions manual available online for instructors
* Offers simple examples that provide the reader with an intuitive understanding of the theory
* Features source code for the examples available on the author's website
* Provides advanced mathematical techniques for analyzing EAs, including Markov modeling and dynamic system modeling

Evolutionary Optimization Algorithms: Biologically Inspired and Population-Based Approaches to Computer Intelligence is an ideal text for advanced undergraduate students, graduate students, and professionals involved in engineering and computer science.




Note Editore

This book covers the theory, history, mathematics, and applications of evolutionary optimization algorithms. Most of these algorithms are motivated by biological processes. The algorithms that are discussed include genetic algorithms, evolutionary computing, ant colony optimization, biogeography-based optimization, differential evolution, and artificial immune systems. The book includes a companion web site with MATLAB code so that the reader can reproduce all of the examples. The book also includes problems at the end of each chapter, and a solution manual is available to instructors.










Altre Informazioni

ISBN:

9780470937419

Condizione: Nuovo
Dimensioni: 234 x 44 x 152 mm Ø 1157 gr
Formato: Copertina rigida
Pagine Arabe: 784


Dicono di noi





Per noi la tua privacy è importante


Il sito utilizza cookie ed altri strumenti di tracciamento che raccolgono informazioni dal dispositivo dell’utente. Oltre ai cookie tecnici ed analitici aggregati, strettamente necessari per il funzionamento di questo sito web, previo consenso dell’utente possono essere installati cookie di profilazione e marketing e cookie dei social media. Cliccando su “Accetto tutti i cookie” saranno attivate tutte le categorie di cookie. Per accettare solo deterninate categorie di cookie, cliccare invece su “Impostazioni cookie”. Chiudendo il banner o continuando a navigare saranno installati solo cookie tecnici. Per maggiori dettagli, consultare la Cookie Policy.

Impostazioni cookie
Rifiuta Tutti i cookie
Accetto tutti i cookie
X