libri scuola books Fumetti ebook dvd top ten sconti 0 Carrello


Torna Indietro

gicquel renaud - energy systems
Zoom

Energy Systems A New Approach to Engineering Thermodynamics




Disponibilità: Normalmente disponibile in 20 giorni
A causa di problematiche nell'approvvigionamento legate alla Brexit sono possibili ritardi nelle consegne.


PREZZO
208,98 €
NICEPRICE
198,53 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con Carta della cultura giovani e del merito, Carta della Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Editore:

CRC Press

Pubblicazione: 10/2011
Edizione: 1° edizione





Note Editore

Considered as particularly difficult by generations of students and engineers, thermodynamics applied to energy systems can now be taught with an original instruction method. Energy Systems applies a completely different approach to the calculation, application and theory of multiple energy conversion technologies. It aims to create the reader’s foundation for understanding and applying the design principles to all kinds of energy cycles, including renewable energy. Proven to be simpler and more reflective than existing methods, it deals with energy system modeling, instead of the thermodynamic foundations, as the primary objective. Although its style is drastically different from other textbooks, no concession is done to coverage: with encouraging pace, the complete range from basic thermodynamics to the most advanced energy systems is addressed. The accompanying Thermoptim™ portal (http://direns.mines-paristech.fr/Sites/Thopt/en/co/_Arborescence_web.html) presents the software and manuals (in English and French) to solve over 200 examples, and programming and design tools for exercises of all levels of complexity. The reader is explained how to build appropriate models to bridge the technological reality with the theoretical basis of energy engineering. Offering quick overviews through e-learning modules moreover, the portal is user-friendly and enables to quickly become fully operational. Students can freely download the Thermoptim™ modeling software demo version (in seven languages) and extended options are available to lecturers. A professional edition is also available and has been adopted by many companies and research institutes worldwide - www.thermoptim.org This volume is intended as for courses in applied thermodynamics, energy systems, energy conversion, thermal engineering to senior undergraduate and graduate-level students in mechanical, energy, chemical and petroleum engineering. Students should already have taken a first year course in thermodynamics. The refreshing approach and exceptionally rich coverage make it a great reference tool for researchers and professionals also. Contains International Units (SI).




Sommario

Forewords, About the Author, General introduction, Structure of the book, Objectives, A working tool on many levels, Mind Maps, List of Symbols, Conversion Factors I First Steps in Engineering Thermodynamics 1 A New Educational Paradigm1.1 Introduction1.2 General remarks on the evolution of training specifi cations1.3 Specifi cs of applied thermodynamics teaching1.4 A new educational paradigm1.5 Diapason modules1.6 A three-step progressive approach1.7 Main pedagogic innovations brought by Thermoptim1.8 Digital resources of the Thermoptim-UNIT portal1.9 Comparison with other tools with teaching potential1.10 ConclusionReferences 2 First Steps in Thermodynamics: Absolute Beginners 2.1 Architecture of the machines studied 2.1.1 Steam power plant 2.1.2 Gas turbine 2.1.3 Refrigeration machine 2.2 Four basic functions 2.3 Notions of thermodynamic system and state 2.4 Energy exchange between a thermodynamic system and its surroundings 2.5 Conservation of energy: first law of thermodynamics 2.6 Application to the four basic functions previously identified 2.6.1 Compression and expansion with work 2.6.2 Expansion without work: valves, filters 2.6.3 Heat exchange 2.6.4 Combustion chambers, boilers 2.7 Reference processes 2.7.1 Compression and expansion with work 2.7.2 Expansion without work: valves, filters 2.7.3 Heat exchange 2.7.4 Combustion chambers, boilers 2.8 Summary reminders on pure substance properties 2.9 Return to the concept of state and choice of state variables to consider 2.10 Thermodynamic charts 2.10.1 Different types of charts 2.10.2 (h, ln(P)) chart 2.11 Plot of cycles in the (h, ln(P)) chart 2.11.1 Steam power plant 2.11.2 Refrigeration machine 2.12 Modeling cycles with Thermoptim 2.12.1 Steam power plant 2.12.2 Gas turbine 2.12.3 Refrigeration machine 2.13 Conclusion 3 First Steps in Thermodynamics: Entropy and the Second Law 3.1 Heat in thermodynamic systems 3.2 Introduction of entropy 3.3 Second law of thermodynamics 3.3.1 Limits of the fi rst law of thermodynamics 3.3.2 Concept of irreversibility 3.3.3 Heat transfer inside an isolated system, conversion of heat into work 3.3.4 Statement of the second law 3.4 (T, s) Entropy chart 3.5 Carnot effectiveness of heat engines 3.6 Irreversibilities in industrial processes 3.6.1 Heat exchangers 3.6.2 Compressors and turbines 3.7 Plot of cycles in the entropy chart, qualitative comparison with the carnot cycle 3.7.1 Steam power plant 3.7.2 Gas turbine 3.7.3 Refrigeration machine 3.8 Conclusion II Methodology, Thermodynamics Fundamentals, Thermoptim, Components 4 Introduction 4.1 A two level methodology 4.1.1 Physical phenomena taking place in a gas turbine 4.1.2 Energy technologies: component assemblies 4.1.3 Generalities about numerical models 4.2 Practical implementation of the double analytical-systems approach 4.3 Methodology 4.3.1 Systems modeling: the General System 4.3.2 Systems-analysis of energy technologies 4.3.3 Component modeling 4.3.4 Thermoptim primitive types 4.3.5 Thermoptim assets References 5 Thermodynamics Fundamentals 5.1 Basic concepts, definitions 5.1.1 Open and closed systems 5.1.2 State of a system, intensive and extensive quantities 5.1.3 Phase, pure substances, mixtures 5.1.4 Equilibrium, reversible process 5.1.5 Temperature 5.1.6 Symbols 5.2 Energy exchanges in a process 5.2.1 Work dW of external forces on a closed system 5.2.2 Heat transfer 5.3 First law of thermodynamics 5.3.1 Definition of internal energy U (closed system) 5.3.2 Application to a fluid mass 5.3.3 Work provided, shaft work t 5.3.4 Shaft work and enthalpy (open systems) 5.3.5 Establishment of enthalpy balance 5.3.6 Application to industrial processes 5.4 Second law of thermodynamics 5.4.1 Definition of entropy 5.4.2 Irreversibility 5.4.3 Carnot effectiveness of heat engines 5.4.4 Fundamental relations for a phase 5.4.5 Thermodynamic potentials 5.5 Exergy 5.5.1 Presentation of exergy for a monotherm open system in steady state 5.5.2 Multithermal open steady-state system 5.5.3 Application to a two-source reversible machine 5.5.4 Special case: heat exchange without work production 5.5.5 Exergy efficiency 5.6 Representation of substance properties 5.6.1 Solid, liquid, gaseous phases 5.6.2 Perfect and ideal gases 5.6.3 Ideal gas mixtures 5.6.4 Liquids and solids 5.6.5 Liquid-vapor equilibrium of a pure substance 5.6.6 Representations of real fluids 5.6.7 Moist mixtures 5.6.8 Real fluid mixtures References Further reading 6 Presentation of Thermoptim 6.1 General 6.1.1 Initiation applets 6.1.2 Interactive charts 6.1.3 Thermoptim’s five working environments 6.2 Diagram editor 6.2.1 Presentation of the editor 6.2.2 Graphical component properties 6.2.3 Links between the simulator and the diagrams 6.3 Simulation environment 6.3.1 Main project screen 6.3.2 Main menus 6.3.3 Export of the results in the form of text file 6.3.4 Point screen 6.3.5 Point moist properties calculations 6.3.6 Node screen 6.4 Extension of Thermoptim by external classes 6.4.1 Extension system for Thermoptim by adding external classes 6.4.2 Software implementation 6.4.3 Viewing available external classes 6.4.4 Representation of an external component in the diagram editor 6.4.5 Loading an external class 6.4.6 Practical realization of an external class 6.5 Different versions of Thermoptim 7 Basic Components and Processes 7.1 Compressions 7.1.1 Thermodynamics of compression 7.1.2 Reference compression 7.1.3 Actual compressions 7.1.4 Staged compression 7.1.5 Calculation of a compression in Thermoptim 7.2 Displacement compressors 7.2.1 Piston compressors 7.2.2 Screw compressors 7.2.3 Criteria for the choice between displacement compressors 7.3 Dynamic compressors 7.3.1 General 7.3.2 Thermodynamics of permanent flow 7.3.3 Similarity and performance of turbomachines 7.3.4 Practical calculation of dynamic compressors7.3.5 Pumps and fans 7.4 Comparison of the various types of compressors 7.4.1 Comparison of dynamic and displacement compressors 7.4.2 Comparison between dynamic compressors 7.5 Expansion 7.5.1 Thermodynamics of expansion 7.5.2 Calculation of an expansion in Thermoptim 7.5.3 Turbines 7.5.4 Turbine performance maps 7.5.5 Degree of reaction of a stage 7.6 Combustion 7.6.1 Combustion phenomena, basic mechanisms 7.6.2 Study of complete combustion 7.6.3 Study of incomplete combustion 7.6.4 Energy properties of combustion reactions 7.6.5 Emissions of gaseous pollutants 7.6.6 Calculation of combustion in Thermoptim 7.6.7 Technological aspects 7.7 Throttling or flash 7.8 Water vapor/gas mixtures processes 7.8.1 Moist process screens 7.8.2 Moist mixers 7.8.3 Heating a moist mixture 7.8.4 Cooling of moist mix 7.8.5 Humidification of a gas 7.8.6 Dehumidification of a mix by desiccation 7.8.7 Determination of supply conditions 7.8.8 Air conditioning processes in a psychrometric chart 7.9 Examples of components represented by external classes 7.9.1 Nozzles 7.9.2 Diffusers 7.9.3 Ejectors References Further reading 8 Heat Exchangers 8.1 Principles of operation of a heat exchanger 8.1.1 Heat flux exchanged 8.1.2 Heat exchange coefficient U 8.1.3 Fin effectiveness 8.1.4 Values of convection coefficients h 8.2 Phenomenological models for the calculation of heat exchangers 8.2.1 Number of transfer units method 8.2.2 Relationship between NTU and e 8.2.3 Matrix formulation 8.2.4 Heat exchanger assemblies 8.2.5 Relationship with the LMTD method 8.2.6 Heat exchanger pinch 8.3 Calculation of heat exchangers in Thermoptim 8.3.1 “Exchange” processes 8.3.2 Creation of a heat exchanger in the diagram editor 8.3.3 Heat exchanger screen 8.3.4 Simple heat exchanger design 8.3.5 Generic liquid 8.3.6 Off-design calculation of heat exchangers 8.3.7 Thermocouplers 8.4 Technological aspects 8.4.1 Tube exchangers 8.4.2 Plate heat exchangers 8.4.3 Other types of heat exchangers 8.5 Summary References Further reading 9 Examples of Applications 9.1 Steam power plant cycle 9.1.1 Principle of the machine and problem data 9.1.2 Creation of the diagram 9.1.3 Creation of simulator




Autore

Renaud Gicquel is Professor at the École des Mines de Paris (Mines ParisTech), France. He has a special interest and passion for the combination of thermodynamics and energy-powered system education with modern information technology tools and developed various software packages to facilitate the teaching of applied thermodynamics and the simulation of energy systems. Professional background: Renaud Gicquel was trained as a mining engineer and obtained his PhD in the same discipline an the Paris VI University in Paris. In the early eighties, he started his professional life as a Special Assistant to the Secretary General at the United Nations Conference in New York on new and renewable sources of energy. After positions at the French General Electric Company and the Ministry of Research and Technology, he was the advisor for Internatioanl Issues at the Centre National de la Recherche Scientifique (CNRS). IN 1986, together with Michel Grenon, he founded the Mediterranean Energy Observatory (OME) in Sophia Antipolis in the South of France. In the early nineties, he was the Deputy Director of the Ecole des Mines de Nantes (EMN) and Head of the Energy Systems and Environment Department. He also acted at the coordinator of ARTEMIS, a thermal energy research group, which he created in partnership with the University of Nantes and Polytech Nantes. Since the mid eighties, Dr Gicquel continued his academic career at the Centre for Energy Studies of the Ecole de Mines de Paris. Acting as the head and as a full professor, he teaches applied thermodynamics, global energy issues and energy system modeling. His research activities are focused on the optimization of complex thermodynamic plants and on the use of information and communication technologies for scientific instructions. He developed several software packages and published two textbooks. To facilitate the student’s learning of applied thermodynamics and the simulation of energy systems better, he developed the Thermoptim software system, which has been supported since 2006 by the portal www.thermoptim.org.










Altre Informazioni

ISBN:

9780415685009

Condizione: Nuovo
Dimensioni: 11.01 x 8.25 in Ø 5.95 lb
Formato: Copertina rigida
Illustration Notes:Illustrations
Pagine Arabe: 1064


Dicono di noi