Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.
Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente
This book constitutes the proceedings of the Second CSIG Conference on Emotional Intelligence, CEI 2024, held in Nanjing, China during December 6-8, 2024.
The 14 full papers and 2 short papers presented in this volume were carefully reviewed and selected from 41 submissions. These papers have been categorized under the following topical sections: Emotional Intelligence Surveys and Databases; Emotional Intelligence Methods; Emotional Intelligence Applications.
.- Emotional Intelligence Surveys and Databases.
.- Affective Computing for Healthcare: Recent Trends, Applications, Challenges, and Beyond.
.- REFN: A Multimodal Database for Emotion Analysis Using Functional Near-infrared Spectroscopy.
.- Emotional Intelligence Methods.
.- EIDA: Explicit- and Implicit-space Self-supervised Learning for Visual Emotion Adaptation.
.- A Three streams Convolutional Transformer Fusion Model for Facial Macro- and Micro-Expressions Spotting.
.- Facial Action Unit Recognition with Micro-Action-Aware Transformer.
.- Local and Global Iterative Adaptation Based on Meta learning for Source-free Cross-Corpus Speech Emotion Recognition.
.- Decoupled Representation with Multimodal Prompts for Emotion Recognition in Conversation.
.- Emotional Intelligence Applications.
.- Generative Text Prompts for Image Aesthetic Quality Assessment.
.- Large Language Model Enhanced Fuzzy Logic Fusion Framework for Stance Detection.
.- Skeleton-based Online Action Detection with Temporal Enhancement.
.- Fine-Grained Spatial-Temporal Framework for Engagement Prediction.
.- Multimodal Engagement Recognition by fusing Transformer and Bi-LSTM.
.- Emotional Interaction Hardware Design for Wrist Rehabilitation Based on Secondary Fuzzy Reasoning.
.- Attention-Based Audio Depression Recognition Integrating Handcrafted and Deep Features.
.- STC-ND: Leveraging Spatialtemporal Characteristics with NeXtVLAD for Depression Detection from Few-Channel EEG Signals.
.- DepLLM: Fine-Tuning Large Language Models with a Chinese Dialogue Dataset for Depression Diagnosis via Mixture of Specialized Experts.
Il sito utilizza cookie ed altri strumenti di tracciamento che raccolgono informazioni dal dispositivo dell’utente. Oltre ai cookie tecnici ed analitici aggregati, strettamente necessari per il funzionamento di questo sito web, previo consenso dell’utente possono essere installati cookie di profilazione e marketing e cookie dei social media. Cliccando su “Accetto tutti i cookie” saranno attivate tutte le categorie di cookie. Per accettare solo deterninate categorie di cookie, cliccare invece su “Impostazioni cookie”. Chiudendo il banner o continuando a navigare saranno installati solo cookie tecnici. Per maggiori dettagli, consultare la Cookie Policy.