home libri books Fumetti ebook dvd top ten sconti 0 Carrello


Torna Indietro

heinrich gert (curatore); kipscholl reinhold (curatore); stocek radek (curatore) - degradation of elastomers in practice, experiments and modeling

Degradation of Elastomers in Practice, Experiments and Modeling

; ;




Disponibilità: Normalmente disponibile in 15 giorni


PREZZO
216,98 €
NICEPRICE
206,13 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Editore:

Springer

Pubblicazione: 10/2022
Edizione: 1st ed. 2023





Trama

This volume describes new insights into the main aspects of rubber degradation by material’s fatigue, wear and aging evolution, as well as their impact on mechanical rubber properties. It provides a thorough state-of-art explanation of the essential chemical, physical and mechanical principles as well as practices of material characterization for wear prediction, and to convey or define novel strategies and procedures of planning effective wear test programs. The initiating factors of abrasion, the development of surface abrasion on sharp and blunt tracks (so called cutting and chipping) and the influence of smear and lubricants is also summarized. The volume is of interest to research scientists in related fields from academia and industry. 





Sommario

Basic Mechanisms and Predictive Testing of Tire-Road Abrasion.- Thermo-Oxidative Aging and Mechanical Fatigue of Elastomer Compounds Used in Various Fields of Rubber Industry.- Novel Approach on Analyzing Mechanochemical Wear Mechanism of Rubber Vulcanizates in Molecular Scale.- Tire-Abrasion Particles in the Environment.- Multiphysical Modeling and Simulation of Thermal Damage of Elastomers: State of the Art and Developments Towards Cyber-Physical Systems.- Experimental and Numerical Description of the Heat Build-Up in Rubber Under Cyclic Loading.- The Effect of Thermal Ageing on the Fatigue Resistance of Hydrogenated Acrylonitrile Butadiene Rubber (HNBR) Compounds.- Effect of Antioxidants on the Aging Behavior of NR and S-SBR Materials.- Degradation of Tires During Intended Usage.- Thermal and Thermo-Oxidative Degradation of Rubbers: Some Recent Studies.- Experimental Analysis of Fast Crack Growth in Elastomers.- The Effect of Apparent Cross-Link Density on Cut and Chip Wear in Natural Rubber.- Parameters Influencing Fatigue Characteristics of Tyre Tread Rubber Compounds.- Mechanistic and Kinetic Studies on Degradation Processes of Rubber Types.




Autore

Gert Heinrich graduated at the University in Jena (G) in quantum physics in 1973. At the University of Technology (TH) Leuna-Merseburg, he finished his doctorate in 1978 in polymer network physics and his Habilitation in 1986 about theory of polymer networks and topological constraints. In 1990 he received a position at the tire manufacturer Continental in Hanover (G) as senior research scientist and head of Materials Research. Heinrich continued his academic activities as lecturer at Universities of Hanover (G) and Halle/Wittenberg (G). In 2002, he was appointed as a full professor for “Polymer Materials and Rubber Technology” at the Technische Universität Dresden and as director of the Institute of Polymer Materials at the Leibniz Institute of Polymer Research Dresden e. V. (IPF). Since 2017 he is a Senior Professor. His work has been recognized by several grants and awards, e.g. the George Stafford Whitby Award for distinguished teaching and research from the Rubber Division of the ACS, the Colwyn Medal in UK for outstanding services to the rubber industry; the Carl Dietrich Harries Medal from the German Rubber Society, and the Lifetime Achievement Award from Tire Technology International Magazine.

Reinhold Kipscholl graduated as Dipl.-Ing. in engineering of data processing and electronics. He is active since more than 20 years in leading industrial positions, especially in the field of testing and characterization of materials with respect of their physical behavior. Since 20 years he is General Manager of Coesfeld GmbH & Co. KG (Dortmund), a German Company developing and producing material testing equipment for plastics and elastomers. In 2012, R. Kipscholl founded and became CEO of PRL Polymer Research Lab., a Czech company which he led until 2021, researching and developing new testing methods for characterization of fracture and wear behavior of rubbers. He has been awarded with the 2018 Fernley H. Bunbury Award (Rubber Division, American Chemical Society).

Radek Stocek obtained his diploma degree as engineer in 2005 from the Czech Technical University in Prague and received his Ph.D. in engineering science in 2012 from the Technical University Chemnitz (Germany), working with M. Gehde and parallel with G. Heinrich at IPF Dresden (G). Then he started an industrial career at PRL Polymer Research Lab (PRL), Zlin, Czech Republic, and parallel an independent academic career at the Tomas Bata University (TBU) in Zlin. He finished his Habilitation in 2019. Currently he is holding the two positions as Managing Director at PRL and Head of the Rubber Department at TBU. His research and scientific interests are focused on characterization of rubber material properties with respect to fatigue and fracture mechanics and on the development of new and advanced testing methodologies, hardware and equipments. One main goal is to optimize industrial rubber products in terms of performance and durability as well as to fasten development cycles and minimizing extensive real rubber product tests before production. His work has been recognized by awards from The Tire Society (USA). 
R. Stocek is author of 54 publications (according to Scopus) and holds several Utility Models. 










Altre Informazioni

ISBN:

9783031151637

Condizione: Nuovo
Collana: Advances in Polymer Science
Dimensioni: 235 x 155 mm Ø 699 gr
Formato: Copertina rigida
Illustration Notes:X, 344 p.
Pagine Arabe: 344
Pagine Romane: x


Dicono di noi