M. C. Edwards, R. C. MacCallum, Introduction: Complexity and Meaning in Latent Variable Modeling. Part I. Complexities in Latent Variable Modeling. R. Cudeck, J. R. Harring, Estimating the Correlation between Two Variables when Individuals are Measured Repeatedly. R. Gonzalez, D. Griffin, Deriving Estimators and Their Standard Errors in Dyadic Data Analysis: Examples Using a Symbolic Computation Program. P. F. Craigmile, M. Peruggia, T. Van Zandt, A Bayesian Hierarchical Model for Response Time Data Providing Evidence for Criteria Changes Over Time. I. Moustaki, A Review of Estimation Methods for Latent Variable Models. G. Zhang, C.T. Lee, Standard Errors for Ordinary Least Squares Estimates of Parameters in Structural Equation Modeling. L. Cai, Three Cheers for the Asymptotically Distribution Free Theory of Estimation and Inference: Some Recent Applications in Linear and Nonlinear Latent Variable Modeling. K. A. Duncan, S. N. MacEachern, Nonparametric Bayesian Modeling of Item Response Curves with a Three Parameter Logistic Prior Mean. W. A. Nicewander, Exact Solutions for IRT Latent Regression Slopes and Latent Variable Intercorrelations. S. du Toit, Analysis of Structural Equation Models Based on a Mixture of Continuous and Ordinal Random Variables in the Case of Complex Survey Data. Part II. Drawing Meaning from Latent Variable Models. R. E. Millsap, A Simulation Paradigm for Evaluating Approximate Fit. R. C. MacCallum, T. Lee, M. W. Browne, Fungible Parameter Values in Latent Curve Models. A. Shapiro, Statistical Inference of Moment/Covariance Structures. J. L. Rodgers, W. H. Beasley, Fisher, Gosset, and Alternative Hypothesis Significance Testing (AHST): Using the Bootstrap to Test Scientific Hypotheses about the Multiple Correlation. S. M. Boker, M. Martin, On The Equilibrium Dynamics of Meaning. K. Tateneni, M. Schiller, Applying Components Analysis to Attitudinal Segmentation.