
Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.
Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente
This graduate textbook provides a natural and structured introduction to Continuum Theory, guiding readers from fundamental concepts to advanced topics. It covers classical results such as locally connected continua, indecomposable continua, arcs, circles, finite graphs, dendroids, and the relationship between the Cantor set and continua. The second half explores the theory of hyperspaces, presenting various models, their properties, and key theorems, while also highlighting elegant and lesser-known mathematical results.
Designed for readers with an understanding of basic topology, this book serves as a valuable resource for PhD students and researchers in mathematics. It offers a rigorous and thorough approach, with detailed proofs that clarify complex arguments—especially regarding the intricate properties of the pseudo-arc. A wealth of exercises helps reinforce understanding and develop problem-solving skills.
This book stands out for its depth and breadth, covering a range of topics. It provides a comprehensive study of hyperspace models, the homogeneity of the Hilbert cube, and the pseudo-arc, offering one of the few accessible and complete proofs of its unique properties. With its structured progression and careful exposition, this book is a valuable reference for anyone interested in continuum theory.
Chapter 1. Introduction.- Chapter 2. Locally Connected Continua.- Chapter 3. CuttingWires and Bumping Boundaries.- Chapter 4. Indecomposable Continua.- Chapter 5. Characterizing Arcs and Circles.- Chapter 6. Finite Graphs.- Chapter 7. Dendroids.- Chapter 8. The Cantor Set.- Chapter 9. Hyperspaces of Continua.- Chapter 10. Models of Hyperspaces.- Chapter 11. Irreducible Continua.- Chapter 12. Unicoherence.- Chapter 13. The Fixed Point Property.- Chapter 14. Inverse Limits.- Chapter 15. Homogeneity of the Hilbert Cube.- Chapter 16. Absolute Retracts.- Chapter 17. Stronger Properties of the Pseudo-Arc.
Alejandro Illanes is a researcher at the National Autonomous University of Mexico, where he has taught for over 45 years. He has over 150 research papers in international journals and has supervised 16 doctoral theses. He is the author of a number of books.


Il sito utilizza cookie ed altri strumenti di tracciamento che raccolgono informazioni dal dispositivo dell’utente. Oltre ai cookie tecnici ed analitici aggregati, strettamente necessari per il funzionamento di questo sito web, previo consenso dell’utente possono essere installati cookie di profilazione e marketing e cookie dei social media. Cliccando su “Accetto tutti i cookie” saranno attivate tutte le categorie di cookie. Per accettare solo deterninate categorie di cookie, cliccare invece su “Impostazioni cookie”. Chiudendo il banner o continuando a navigare saranno installati solo cookie tecnici. Per maggiori dettagli, consultare la Cookie Policy.