libri scuola books Fumetti ebook dvd top ten sconti 0 Carrello


Torna Indietro

martinez wendy l.; martinez angel r. - computational statistics handbook with matlab
Zoom

Computational Statistics Handbook with MATLAB

;




Disponibilità: Normalmente disponibile in 20 giorni
A causa di problematiche nell'approvvigionamento legate alla Brexit sono possibili ritardi nelle consegne.


PREZZO
58,98 €
NICEPRICE
56,03 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Pubblicazione: 09/2021
Edizione: Edizione nuova, 3° edizione





Note Editore

A Strong Practical Focus on Applications and AlgorithmsComputational Statistics Handbook with MATLAB®, Third Edition covers today’s most commonly used techniques in computational statistics while maintaining the same philosophy and writing style of the bestselling previous editions. The text keeps theoretical concepts to a minimum, emphasizing the implementation of the methods.New to the Third EditionThis third edition is updated with the latest version of MATLAB and the corresponding version of the Statistics and Machine Learning Toolbox. It also incorporates new sections on the nearest neighbor classifier, support vector machines, model checking and regularization, partial least squares regression, and multivariate adaptive regression splines.Web ResourceThe authors include algorithmic descriptions of the procedures as well as examples that illustrate the use of algorithms in data analysis. The MATLAB code, examples, and data sets are available online.




Sommario

Introduction What Is Computational Statistics? An Overview of the Book Probability Concepts Introduction Probability Conditional Probability and Independence Expectation Common Distributions Sampling Concepts Introduction Sampling Terminology and Concepts Sampling Distributions Parameter Estimation Empirical Distribution Function Generating Random Variables Introduction General Techniques for Generating Random Variables Generating Continuous Random Variables Generating Discrete Random Variables Exploratory Data Analysis Introduction Exploring Univariate Data Exploring Bivariate and Trivariate Data Exploring Multidimensional Data Finding Structure Introduction Projecting Data Principal Component Analysis Projection Pursuit EDA Independent Component Analysis Grand Tour Nonlinear Dimensionality Reduction Monte Carlo Methods for Inferential Statistics Introduction Classical Inferential Statistics Monte Carlo Methods for Inferential Statistics Bootstrap Methods Data Partitioning Introduction Cross-Validation Jackknife Better Bootstrap Confidence Intervals Jackknife-after-Bootstrap Probability Density Estimation Introduction Histograms Kernel Density Estimation Finite Mixtures Generating Random Variables Supervised Learning Introduction Bayes’ Decision Theory Evaluating the Classifier Classification Trees Combining Classifiers Nearest Neighbor Classifier Support Vector MachinesUnsupervised Learning Introduction Measures of Distance Hierarchical Clustering K-Means Clustering Model-Based Clustering Assessing Cluster Results Parametric Models Introduction Spline Regression Models Logistic Regression Generalized Linear Models Model Selection and RegularizationPartial Least Squares RegressionNonparametric Models Introduction Some Smoothing Methods Kernel Methods Smoothing Splines Nonparametric Regression—Other Details Regression Trees Additive Models Multivariate Adaptive Regression SplinesMarkov Chain Monte Carlo Methods Introduction Background Metropolis–Hastings Algorithms The Gibbs Sampler Convergence Monitoring Appendix A: MATLAB® Basics Appendix B: Projection Pursuit Indexes Appendix C: Data Sets Appendix D: Notation References Index MATLAB® Code, Further Reading, and Exercises appear at the end of each chapter.




Autore

Wendy L. Martinez is a mathematical statistician with the U.S. Bureau of Labor Statistics. She is a fellow of the American Statistical Association, a co-author of several popular Chapman & Hall/CRC books, and a MATLAB® user for more than 20 years. Her research interests include text data mining, probability density estimation, signal processing, scientific visualization, and statistical pattern recognition. She earned an M.S. in aerospace engineering from George Washington University and a Ph.D. in computational sciences and informatics from George Mason University.Angel R. Martinez is fully retired after a long career with the U.S. federal government and as an adjunct professor at Strayer University, where he taught undergraduate and graduate courses in statistics and mathematics. Before retiring from government service, he worked for the U.S. Navy as an operations research analyst and a computer scientist. He earned an M.S. in systems engineering from the Virginia Polytechnic Institute and State University and a Ph.D. in computational sciences and informatics from George Mason University.










Altre Informazioni

ISBN:

9781032179582

Condizione: Nuovo
Dimensioni: 9.25 x 6.25 in Ø 3.09 lb
Formato: Brossura
Illustration Notes:205 b/w images
Pagine Arabe: 760


Dicono di noi





Per noi la tua privacy è importante


Il sito utilizza cookie ed altri strumenti di tracciamento che raccolgono informazioni dal dispositivo dell’utente. Oltre ai cookie tecnici ed analitici aggregati, strettamente necessari per il funzionamento di questo sito web, previo consenso dell’utente possono essere installati cookie di profilazione e marketing e cookie dei social media. Cliccando su “Accetto tutti i cookie” saranno attivate tutte le categorie di cookie. Per accettare solo deterninate categorie di cookie, cliccare invece su “Impostazioni cookie”. Chiudendo il banner o continuando a navigare saranno installati solo cookie tecnici. Per maggiori dettagli, consultare la Cookie Policy.

Impostazioni cookie
Rifiuta Tutti i cookie
Accetto tutti i cookie
X