libri scuola books Fumetti ebook dvd top ten sconti 0 Carrello


Torna Indietro

borwein peter - computational excursions in analysis and number theory
Zoom

Computational Excursions in Analysis and Number Theory




Disponibilità: Normalmente disponibile in 15 giorni
A causa di problematiche nell'approvvigionamento legate alla Brexit sono possibili ritardi nelle consegne.


PREZZO
108,98 €
NICEPRICE
103,53 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Editore:

Springer US

Pubblicazione: 07/2002
Edizione: 1





Trama

This book is designed for a topics course in computational number theory. It is based around a number of difficult old problems that live at the interface of analysis and number theory. Some of these problems are the following: The Integer Chebyshev Problem. Find a nonzero polynomial of degree n with integer eoeffieients that has smallest possible supremum norm on the unit interval. Littlewood's Problem. Find a polynomial of degree n with eoeffieients in the set { + 1, -I} that has smallest possible supremum norm on the unit disko The Prouhet-Tarry-Escott Problem. Find a polynomial with integer co­ effieients that is divisible by (z - l)n and has smallest possible 1 norm. (That 1 is, the sum of the absolute values of the eoeffieients is minimal.) Lehmer's Problem. Show that any monie polynomial p, p(O) i- 0, with in­ teger coefficients that is irreducible and that is not a cyclotomic polynomial has Mahler measure at least 1.1762 .... All of the above problems are at least forty years old; all are presumably very hard, certainly none are completely solved; and alllend themselves to extensive computational explorations. The techniques for tackling these problems are various and include proba­ bilistic methods, combinatorial methods, "the circle method," and Diophantine and analytic techniques. Computationally, the main tool is the LLL algorithm for finding small vectors in a lattice. The book is intended as an introduction to a diverse collection of techniques.




Sommario

1 Introduction.- 2 LLL and PSLQ.- 3 Pisot and Salem Numbers.- 4 Rudin-Shapiro Polynomials.- 5 Fekete Polynomials.- 6 Products of Cyclotomic Polynomials.- 7 Location of Zeros.- 8 Maximal Vanishing.- 9 Diophantine Approximation of Zeros.- 10 The Integer Chebyshev Problem.- 11 The Prouhet-Tarry-Escott Problem.- 12 The Easier Waring Problem.- 13 The Erd?s-Szekeres Problem.- 14 Barker Polynomials and Golay Pairs.- 15 The Littlewood Problem.- 16 Spectra.- A A Compendium of Inequalities.- B Lattice Basis Reduction and Integer Relations.- C Explicit Merit Factor Formulae.- D Research Problems.










Altre Informazioni

ISBN:

9780387954448

Condizione: Nuovo
Collana: CMS Books in Mathematics
Dimensioni: 0 x 0 mm
Formato: Copertina rigida
Illustration Notes:X, 220 p. 4 illus.
Pagine Arabe: 220
Pagine Romane: x


Dicono di noi