1 Informal Introduction: Data Processing, Interval Computations, and Computational Complexity.- 2 The Notions of Feasibility and NP-Hardness: Brief Introduction.- 3 In the General Case, the Basic Problem of Interval Computations is Intractable.- 4 Basic Problem of Interval Computations for Polynomials of a Fixed Number of Variables.- 5 Basic Problem of Interval Computations for Polynomials of Fixed Order.- 6 Basic Problem of Interval Computations for Polynomials with Bounded Coefficients.- 7 Fixed Data Processing Algorithms, Varying Data: Still NP-Hard.- 8 Fixed Data, Varying Data Processing Algorithms: Still Intractable.- 9 What if We only Allow some Arithmetic Operations in Data Processing?.- 10 For Fractionally-Linear Functions, a Feasible Algorithm Solves the Basic Problem of Interval Computations.- 11 Solving Interval Linear Systems is NP-Hard.- 12 Interval Linear Systems: Search for Feasible Classes.- 13 Physical Corollary: Prediction is not Always Possible, Even for Linear Systems with Known Dynamics.- 14 Engineering Corollary: Signal Processing is NP-Hard.- 15 Bright Sides of NP-Hardness of Interval Computations I: NP-Hard Means That Good Interval Heuristics can Solve other Hard Problems.- 16 If Input Intervals are Narrow Enough, Then Interval Computations are Almost Always Easy.- 17 Optimization — a First Example of a Numerical Problem in which Interval Methods are used: Computational Complexity and Feasibility.- 18 Solving Systems of Equations.- 19 Approximation of Interval Functions.- 20 Solving Differential Equations.- 21 Properties of Interval Matrices I: Main Results.- 22 Properties of Interval Matrices II: Proofs and Auxiliary Results.- 23 Non-Interval Uncertainty I: Ellipsoid Uncertainty and its Generalizations.- 24 Non-Interval Uncertainty II:Multi-Intervals and Their Generalizations.- 25 What if Quantities are Discrete?.- 26 Error Estimation for Indirect Measurements: Interval Computation Problem is (Slightly) Harder than a Similar Probabilistic Computational Problem.- A In Case of Interval (Or More General) Uncertainty, no Algorithm can Choose the Simplest Representative.- B Error Estimation for Indirect Measurements: Case of Approximately Known Functions.- C From Interval Computations to Modal Mathematics.- D Beyond NP: Two Roots Good, one Root Better.- E Does “NP-Hard”Really Mean “Intractable”?.- F Bright Sides of NP-Hardness of Interval Computations II: Freedom of Will?.- G The Worse, The Better: Paradoxical Computational Complexity of Interval Computations and Data Processing.- References.