libri scuola books Fumetti ebook dvd top ten sconti 0 Carrello


Torna Indietro

klein patrick - combining expert knowledge and deep learning with case-based reasoning for predictive maintenance
Zoom

Combining Expert Knowledge and Deep Learning with Case-Based Reasoning for Predictive Maintenance




Disponibilità: Normalmente disponibile in 15 giorni


PREZZO
108,98 €
NICEPRICE
103,53 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Pubblicazione: 04/2025





Trama

If a manufacturing company's main goal is to sell products profitably, protecting production systems from defects is essential and has led to vast documentation and expert knowledge. Industry 4.0 has facilitated access to sensor and operational data across the shop floor, enabling data-driven models that detect faults and predict failures, which are crucial for predictive maintenance to minimize unplanned downtimes and costs. Commonly, a universally applicable machine learning (ML) approach is used without explicitly integrating prior knowledge from sources beyond training data, risking incorrect rediscovery or neglecting already existing knowledge. Integrating expert knowledge with ML can address the scarcity of failure examples and avoid the learning of spurious correlations, though it poses technical challenges when combining Semantic Web-based knowledge graphs with neural networks (NNs) for time series data.

For his research, a physical smart factory model with condition monitoring sensors and a knowledge graph was developed. This setup generated the required data for exploring the integration of expert knowledge with (Siamese) NNs for similarity-based fault detection, anomaly detection, and automation of root cause analysis. Patrick Klein applied symbolic and sub-symbolic AI techniques, demonstrating that integrating expert knowledge with NNs enhances prediction performance and confidence in them while reducing the number of learnable parameters and failure examples.





Sommario

Introduction.- Foundations.- Data Generation for AI-based Predictive Maintenance Research.- Semantic Description of a Factory Simulation Environment.- Problem Definition and Introduction of Developed Constructs Used Across Application Scenarios.- Combining a Deep Anomaly Detection with a Semantic Knowledge Graph for Diagnosis.- Infusing Expert Knowledge into a Siamese Neural Network for Encoding Time Series.- Conclusion.





Autore

Patrick Klein worked as a research assistant at the University of Trier and also briefly in part-time for the Trier branch of the German Research Center for Artificial Intelligence (DFKI) while conducting his doctoral research at the University's Internet of Things Laboratory, focusing on combining expert knowledge with deep learning for predictive maintenance. After completing his PhD thesis, he joined the Predictive Service Center in the R&D department of the technology and global market leader in machine tools, as a Data Scientist/Engineer, developing data-driven solutions for predictive maintenance.





I LIBRI CHE INTERESSANO A CHI HA I TUOI GUSTI

Machine learning upgrade – a data scientist's guide to mlops, llms, and ml infrastructure



I LIBRI ACQUISTATI DA CHI HA I TUOI GUSTI

1984. level b2
Onda enigmistica english magazine 1
Historia de una gaviota y del gato que le enseno' a volar. nivel a1
Vicini alle nuvole. i grandi scalatori del ciclismo moderno
Onda enigmistica english magazine 2



Altre Informazioni

ISBN:

9783658469856

Condizione: Nuovo
Dimensioni: 210 x 148 mm
Formato: Brossura
Illustration Notes:XXVIII, 406 p. 128 illus., 16 illus. in color. Textbook for German language market.
Pagine Arabe: 406
Pagine Romane: xxviii


Dicono di noi





Per noi la tua privacy è importante


Il sito utilizza cookie ed altri strumenti di tracciamento che raccolgono informazioni dal dispositivo dell’utente. Oltre ai cookie tecnici ed analitici aggregati, strettamente necessari per il funzionamento di questo sito web, previo consenso dell’utente possono essere installati cookie di profilazione e marketing e cookie dei social media. Cliccando su “Accetto tutti i cookie” saranno attivate tutte le categorie di cookie. Per accettare solo deterninate categorie di cookie, cliccare invece su “Impostazioni cookie”. Chiudendo il banner o continuando a navigare saranno installati solo cookie tecnici. Per maggiori dettagli, consultare la Cookie Policy.

Impostazioni cookie
Rifiuta Tutti i cookie
Accetto tutti i cookie
X