Table of Contents Section 1: Introduction 1.1- Early development of bioresorbable scaffold Patrick W. Serruys Section 2: Principles of bioresorption, vascular application 2.1- Degradable, biodegradable and bioresorbable polymers for time-limited therapy Michel Vert 2.2- Lactic acid-based polymers in depth Michel Vert and Antoine Lafont 2.3- Scaffold processing Jack Scanlon 2.4- Basics of biodegradation of magnesium Michael Haude, Daniel Lootz, Hubertus Degen and Matthias Epple 2.5- Basics of biodegradation of iron scaffold Deyuan Zhang and Runlin Gao Section 3: From bench test to preclinical assessment 3.1- Unlocking scaffold mechanical properties Jack Scanlon, Yoshinobu Onuma, Patrick W. Serruys and Joseph Deitzel 3.2- Bench testing for polymeric bioresorbable scaffolds John A. Ormiston, Bruce Webber, Janarthanan Sathananthan, Pau Medran-Gracia, Susann Beier and Mark WI Webster 3.3- Bench test for magnesium scaffold Daniel Lootz, Wolfram Schmidt, Peter Behrens, Klaus-Peter Schmitz, Michael Haude and Ron Waksman 3.4- Simulation of flow and shear stress Nicolas Foin, Ryo Torii, Renick Darren Lee, Alessio Mattesini, Carlo Di Mario, Philip Wong, Erhan Tenekecioglu, Tom Crake, Christos Bourantas and Patrick W. Serruys 3.5- Preclinical assessment of bioresorbable scaffolds and regulatory implication Tobias Koppara, Eric Wittchow, Renu Virmani and Michael Joner Section 4: Lesson learned from preclinical assessment 4.1- PLA scaffold Kazuyuki Yahagi, Sho Torii, Erica Pacheco, Frank D. Kolodgie, Aloke V. Finn and Renu Virmani 4.2- Iron Runlin Gao, Deyuan Zhang, Hong Qiu, Chao Wu, Ying Xia and Gui Zhang Section 5: Imaging to evaluate the bioresorbable scaffold: A corelab perspective, methodology of measurement and assessment 5.1- Quantative coronary angiography of bioresorbable vascular scaffold: a corelab perspective Yohei Sotomi, Patrick W. Serruys and Yoshinobu Onuma 5.2- Assessment of bioresorbable scaffolds by IVUS: echogenicity, virtual histology and palpography Carlos M. Campos, Patrick W. Serruys and Hector M. Garcia-Garcia 5.3- Optical coherence tomography analysis vascular scaffold in comparison with metallic stents: a corelab perspective Yohei Sotomi, Pannipa Suwannasom, Jouke Dijkstra, Carlos Collet, Shimpei Nakatani, Patrick W. Serruys, Yoshinobu Onuma 5.4- Non-invasive coronary tomography analysis after bioresorbable scaffold implantation Carlos Collet, Koen Nieman, Patrick W. Serruys and Yoshinobu Onuma 5.5- Angiography is sufficient J Ribamar Costa, Jr. and Alexandre Abizaid 5.6- Intravascular ultrasound is a must in bioresorbable scaffold implantation Hiroyoshi Kawamoto, Neil Ruparelia and Antonio Colombo 5.7- OCT is the way to go Jiang Ming Fam, Nienke Simone van Ditzhuijzen, Jors van Sjide, Bu Chan Zhang, Antonios Karanasos, Robert-Jan van Geuns and Evelyn Regar 5.8- Imaging to evaluate the bioresorbable scaffold. Clinician’s perspective: I need both (IVUS and OCT) Josep Gomez-Lara and Antoni Serra 5.9- Multislice computed tomography as a modality of follow-up Antonio L. Bartorelli, Daniele Andreini, Simona Espejo and Manuel Pan Section 6: Clinical evidence of randomised and non-randomised trials: personal perspective 6.1- What are appropriate clinical endpoints? From device failure assessment to angina evaluation Maik J. Grundeken, Yoshinobu Onuma and Patrick W. Serruys 6.2- Angina reduction after BRS implantation: correlation with changes in coronary haemodynamics Nick E.J. West, Adam J. Brown and Stephen P. Hoole 6.3- Comparison of everolimus eluting bioresorbable scaffolds with everolimus eluting metallic stents for treatment of coronary artery stenosis: Three-year follow-up of the Absorb II randomized trial Carlos Collet et al. 6.4- The ABSORB China trial Runlin Gao 6.5- ABSORB Japan Takeshi Kimura 6.6- What have we learned from meta-analysis of 1 year outcomes with the Absorb bioresorbable scaffold in patients with coronary heart disease Yohei Sotomi, Carlos Collet, Takeshi Kimura, Runlin Gao, Dean J. Kereiakes, Gregg W. Stone, Stephen G. Ellis, Yoshinobu Onuma and Patrick W. Serruys 6.7- Summary of investigator-driven registries on absorb bioresorbable vascular scaffolds Anna Franzone, Raffaele Piccolo and Stephen Windecker 6.8- Investigator-driven randomised trials Daniele Giacoppo, Roisin Colleran and Adnan Kastrati 6.9- The DESolve scaffold Stefan Verheye, Nagarajan Ramesh, Lynn Morrison and Sara Toyloy 6.10- Results of clinical trials with BIOTRONIK magnesium scaffolds Michael Haude, Daniel Lootz, Raimund Erbel, Jacques Koolen and Ron Waksman 6.11- The REVA medical program: from ReZolve® to Fantom® Alexandre Abizaid and J. Ribamar Costa Jr. 6.12- The Amaranth’s bioresorbable vascular scaffold technology Alaide Chieffo, Juan F. Granada and Antonio Colombo 6.13- The mirage microfiber sirolimus eluting coronary scaffold Teguh Santoso, Liew Houng Bang, Ricardo Costa, Daniel Chamié, Solomon Su, Alexandre Abizaid, Yoshinobu Onuma and Patrick W. Serruys 6.14- The Igaki-Tamai stent: the legacy of the work of Hideo Tamai Soji Nishio, Kunihiko Kosuga, Eisho Kyo, Takafumi Tsuji, Masaharu Okada, Shinsaku Takeda, Yasutaka Inuzuka, Tatsuhiko Hata, Yuzo Takeuchi, Junya Seki and Shigeru Ikeguchi Section 7: Clinical evidence in specific patient subsets: personal perspective 7.1- Left main interventions with BRS Bert Everaert, Piera Capranzano, Corrado Tamburino, Ashok Seth and Robert-Jan van Geuns 7.2- Bioresorbable scaffolds in bifurcations Filippo Fingini, Hiroyoshi Kawamoto and Azeem Latib 7.3- BVS in chronic total occlusions: clinical evidence, tips and tricks Antonio Serra 7.4- Bioresorbable scaffolds in diffuse disease Neil Ruparelia, Hiroyoshi Kawamoto and Antonio Colombo 7.5- Bioresorbable scaffolds in mulitvessel coronary disease R.P. Kraak, Maik J. Grundeken and J.J Wykrzykowska 7.6- Bioresorbable coronary scaffolds in non-St elevation acute coronary syndromes Charis Mamilou and Tommaso Gori 7.7- Bioresorbable vascular scaffold in ST-segment elevation myocardial infarction: clinical evidence, tips and tricks Giuseppe Giacchi and Manel Sabaté 7.8- Bioresorbable scaffolds for treating coronary artery disease in patients with diabetes mellitus Ayyaz Sultan, Takeshi Muramatsu and Javaid Iqbal 7.9- BRS in calcified lesions Ashok Seth 7.10- BRS textbook: invasive sealing of vulnerable, high-risk lesions Christos Bourantas, Ryo Torri, Nicolas Foin, Ajay Suri, Erhan Tenekecioglu, Vikas Thondapu, Tom Crake, Peter Barlis and Patrick W. Serruys Section 8: Complications (incidence, diagnosis, potential mechanisms and treatment) 8.1- Acute and subacute scaffold thrombosis Davide Capodanno 8.2- Late and very late scaffold thrombosis Antonios Karanasos, Bu-Chun Zhang, Jors van der Sijde, Jiang-Ming Fam, Robert-Jan van Geuns and Evelyn Regar 8.3- Treatment of bioresorbable scaffold failure Cordula M. Felix, Bert Everaert, Nigel Jepson, Corrado Tamburino and Robert-Jan van Geuns 8.4- Recoil and bioresorbable scaffolds John A. Ormiston, Bruce Webber, Janarthanan Sathananthan and Mark WI Webster 8.5- Scaffold disruption and late discontinuities Yoshinobu Onuma, Patrick W. Serruys 8.6- The incidence, potential mechanism of side-branch occlusion after implantation of bioresorbable scaffold(s): insights from ABSORB II Yuki Ishibashi, Takeshi Muramatsu, Yohei Sotomi, Yoshinobu Onuma and Patrick W. Serruys Section 9: Tips and tricks to implant BRS 9.1- Tips and tricks for implanting BRS: sizing, pre- and post-dilatation Akihito Tanaka, Richard J. Jabbour and Antonio Colombo 9.2- Approach to bifurcation lesions Ashok Seth Section 10: Emerging technologies (pre-CE mark, pre-FA, pre-PMDA and pre-CFDA) 10.1- Overview of the field Yoshinobu Onuma 10.2- MeRes100™- a sirolimus eluting bioresorbable vascular scaffold system Ashok Seth, Babu Ezhumalai, Sanjeev Bhatt and Pratik Vasani 10.3- XINSORB bioresorbable vascular scaffold Junbo Ge and Li Shen 10.4- NeoVas™ bioresorbable coronary scaffold system Han Yangling 10.5- ArterioSorb™ bioresorbable scaffold by Arteriu