libri scuola books Fumetti ebook dvd top ten sconti 0 Carrello


Torna Indietro

lu junwei - big data analysis
Zoom

Big Data Analysis High Dimensional Probability, Statistics, Optimization, and Inference




Disponibilità: Normalmente disponibile in 10 giorni


PREZZO
135,98 €
NICEPRICE
129,18 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Editore:

Springer

Pubblicazione: 01/2026





Trama

This book covers the methods and theory of high dimensional probability, statistics, large-scale optimization, and inference. We aim to quickly bring readers to the frontier and interdisciplinary areas of statistics, optimization, probability, and machine learning. This book covers topics in:

High dimensional probability, Concentration inequality, Sub-Gaussian random variables, Chernoff bounds, Hoeffding's inequality, Maximal inequalities, High dimensional linear regression, Ordinary least square, Compressed sensing, Lasso, Variations of Lasso including group lasso, fused lasso, adaptive lasso, etc., General high dimensional M- estimators, Variable selection consistency, High dimensional Optimization, Convex geometry, Lagrange duality, Gradient descent, Proximal gradient descent, LARS, ADMM, Mirror descent, Stochastic optimization, Large-Scale Inference, Linear model hypothesis testing, high dimensional inference, Chi-square test, maximal test, and Higher criticism, False discovery rate control.





Sommario

Part I Foundations of Big Data Analysis.- Chapter 1 Introduction.- Chapter 2 Preliminaries in Probability.- Chapter 3 Preliminaries in Linear Algebra.- Part II High-Dimensional Probability.- Chapter 4 Concentration Inequalities.- Chapter 5 Sub-Exponential Random Variables.- Chapter 6 Maximal Inequality.- Part III High-Dimensional Statistics.- Chapter 7 Ordinary Least Squares.- Chapter 8 Compressive Sensing.- Chapter 9 Restricted Isometry Property.- Chapter 10 Statistical Properties of Lasso.- Chapter 11 Variations of Lasso.- Part IV High-Dimensional Optimization.- Chapter 12 Convexity and Subgradient.- Chapter 13 Gradient Descent.- Chapter 14 Proximal Gradient Descent.- Chapter 15 Mirror Descent and Nesterov’s Smoothing.- Chapter 16 Duality and ADMM.- Part V High-Dimensional Inference.- Chapter 17 High Dimensional Inference.- Chapter 18 Debiased Lasso.- Chapter 19 Multiple Hypotheses.- Chapter 20 False Discovery Rate.- Chapter 21 Knock-Off.- References.





Autore

Junwei Lu is an Assistant Professor in Harvard T.H. Chan School of Public Health. His research focuses on the intersection of statistical machine learning and clinical studies, revealing scientific associations among clinical treatment strategies and patient phenotyping, especially focusing on precision medicine leveraging real-world clinical data such as electronic health records data for risk prediction and clinical optimization.











Altre Informazioni

ISBN:

9783032031600

Condizione: Nuovo
Dimensioni: 235 x 155 mm
Formato: Copertina rigida
Illustration Notes:X, 170 p. 31 illus., 26 illus. in color.
Pagine Arabe: 170
Pagine Romane: x


Dicono di noi