libri scuola books Fumetti ebook dvd top ten sconti 0 Carrello


Torna Indietro

bernardo j. m.; berger j. o.; dawid a. p.; smith a. f. m. - bayesian statistics 5
Zoom

Bayesian Statistics 5 Proceedings of the Fifth Valencia International Meeting, June 5-9, 1994

; ; ;




Disponibilità: Normalmente disponibile in 20 giorni
A causa di problematiche nell'approvvigionamento legate alla Brexit sono possibili ritardi nelle consegne.


PREZZO
95,98 €
NICEPRICE
91,18 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Pubblicazione: 05/1996





Note Editore

The Valencia International Meetings on Bayesian Statistics, held every four years, provide the forum for researchers to come together and discuss frontier developments in the field. The resulting Proceedings provide a definitive, up-to-date overview encompassing a wide range of theoretical and applied research. This fifth Proceedings is no exception. In particular, it reflects a growing emphasis on computational issues, concerned with making Bayesian methods routinely available to applied practitioners, both statisticians and speciailists in other subject-matter, whose work depends on careful quantification of uncertainties. This book contains several invited papers by leading authorities.




Sommario

Invited Papers (with discussion); C. Armero and M.J. Bayarri: Bayesian Questions and Answers in Queues; J.O. Berger and L.R. Pericchi: The Intrinsic Bayes Factor for Linear Models; D.A. Berry, A. Thor, C. Cirrincione, S. Edgerton, H. Muss, J. Marks E. Liu, W. Budman D. Wood, M. Perloof, W. Peters and I.C. Henderson: Scientific Inference and Predictions: Multiplicities and Convincing Stories: A Case Study in Breast Cancer Therapy; P.S. Craig, M. Goldstein, A. H. Seheult, and J.A. Smith: Bayes Linear Strategies for Matching Hydrocarbon Reservoir History; P. Diaconis and J. Kemperman: Some New Tools for Dirichlet Priors; W. DuMouchel: Predictive Cross-Validation of Bayesian Meta-Analyses; S.E. Fienberg and M.O. Finkelstein: Bayesian Statistics and the Law; S. French: The Framing of Statistical Decision Theory: A Decision Analytic View; A.E. Gelfand, S.K. Sahu and B.P. Carlin: Efficient Parametrizations for Generalized Linear Mixed Models; E.J. Green, A.F.M. Smith and W.E. Strawderman: Construction of Thematic Maps from Satellite Imagery; Local Sensitivity Analysis; J.A. Hartigan: Bayesian Histograms; N.L. Hjort: Bayesian Approaches to Non- and Semiparametric Density Estimation; K.L. Mengersen and C.P. Robert: Testing for Mixtures: A Bayesian Entropic Approach; C.N. Morris and C.L. Christiansen: Hierarchical Models for Ranking and for Identifying Extremes, with Applications; N.G. Polson: Convergence of Markov Chain MonteCarlo Algorithms; A.E. Raftery, D. Madigan and C.T. Volinsky: Accounting for Model Uncertainty in Survival Analysis Improves Predictive Performance; N. Reid: Likelihood and Bayesian Approximation Methods; N.D. Singpurwalla, S.P. Wilson and E.R. Fuller: Statistical Aspects of Failure Processes in Ceramics; J.Q. Smith: Plausible Bayesian Games; D.J. Spieghalter, A. Thomas and N.G. Best: Computation on Bayesian Graphical Models; T.J. Sweeting: Approximate Bayesian Computation Based on Signed Roots of Log-Density Ratios; A. Tversky and D.J. Koehler: Support Theory: A Nonextensional Representation of Probability Judgment; M. West: Some Statistical Issues in Palaeoclimatology; Contributed Papers; A. Andreev and E. Arjas: A note on Histogram Approximation in Bayesian Density Estimation; C. Bielza, D. Rios-Insua and S. Rios-Insua: Influence Diagrams under Partial Information; C.E. Buck and C.D. Litton: Mixtures, Bayes and Archaeology; C. Carota and G. Parmigiani: On Bayes Factors for Nonparametric Alternatives; J.L. Cervera and J. Munoz: Proper Scoring Rules for Fractiles; Z. Covaliu: Sequential Diagrams and Influence Diagrams: A Complementary Relationship for Modeling and Solving Decision Problems; R.G. Cowell, A.P. Dawid and P. Sebastiani: A comparison of Sequential Learning Methods for Incomplete Data; J. Dmochowski: Intrinsic Priors via Kullback-Leibler Geometry; A.E. Faria and J.W. Smith: Conditional External Bayesianity in Decomposable Influence Diagrams; M. Farrow and M. Goldstein: Diagnostic Geometry for Bayes Linear Prediction Systems; D. Fourdrinier and M.T. Wells: Spherically Symmetric Bayes Estimators for a Linear Subspace of a Normal Law; D. Gamerman and A.F.m. Smith: Bayesian Analysis of Longitudinal Data Studies; A. Gelman, G.O. Roberts and W.R. Gilks: Efficient Metropolis Jumping Rules; J. Geweke: Variable Selection and Model Comparison in Regression; P. Giudici: Learning in Graphical Gaussian Models; R.G. haylock and A. O;Hagan: On Inference for Outputs of Computationally Expensive Algorithms with Uncertainty on the Inputs; M.C. Kennedy and A. O'Hagan: Iterative Rescaling for Bayesian Quadrature; G.E. Kokolakis and P. Dellaportas: Hierarchical Modelling for Classifying Binary Data; D.J. Laws, R.J. Boys and K.D. Glazebrook: A Bayes Decision-Theoretic Approach to Dimensionality Reduction in Screen Design; B. Liseo, L. Petrella and G. Salinetti: Robust Bayesian Analysis: An Interactive Approach; T.A. Mazzuchi and R. Soyer: Adaptive Bayesian Replacement Strategies; N.J. McMillan and L.M. Berliner: Hierarchical Image Reconstruction Using Markov Randop Fields; P.M. Meehan, A.P. Dempster and E.N. Brown: A Belief Function Approach to Likelihood Updating in a Gaussian Linear Model; A. Mira and S. Petrone: Bayesian Hierarchical Nonparametric Inference for Change-Point Problems; J.C. Naylos and J.M. Marriot: A Bayesian Analysis of Non-Stationary AR Series; J. Nunez and J. Llacer: A Bayesian Algorithm for Image Reconstruction with Variable Hyperparameter; D.B. Phillips and A.F.M. Smith: Stochastic Deformable Temnplates and Object Tracking; D.J. Poirier: Prior Beliefs About Fit; J.F. Shortle and M.B. Mendel: The Geometry of Bayesian Inference; M.P. Upsdell: Choosing an Appropriate Covariance Function in Bayesian Smoothing; J.A. Varshavsky: Intrinsic Bayes Factors for Model Selection with Autoregressive Data; I. Verdinelli and L. Wasserman: Bayes Factors, Nuisance Parameters and Imprecise Tests; P. Vounatsou and A.F.M. Smith: Graphical Methods for Simulation-Based Bayesian Inference; S. Walker and J. Wakefield: Bayesian Approaches to the Population Modelling of a Monotonic Dose-Response Relation; D.J. Wilkinson and M. Goldstein: Bayes Linear Adjustment for Variance Matrices; A.G. Wilson and V.E. Johnson: Models for Shape Deformation; M.P. Wiper and L.I. Pettit: On Improving a Model for Combining Experts' Forecasts










Altre Informazioni

ISBN:

9780198523567

Condizione: Nuovo
Dimensioni: 241 x 45.0 x 162 mm Ø 1195 gr
Formato: Copertina rigida
Illustration Notes:line figures, tables
Pagine Arabe: 826


Dicono di noi





Per noi la tua privacy è importante


Il sito utilizza cookie ed altri strumenti di tracciamento che raccolgono informazioni dal dispositivo dell’utente. Oltre ai cookie tecnici ed analitici aggregati, strettamente necessari per il funzionamento di questo sito web, previo consenso dell’utente possono essere installati cookie di profilazione e marketing e cookie dei social media. Cliccando su “Accetto tutti i cookie” saranno attivate tutte le categorie di cookie. Per accettare solo deterninate categorie di cookie, cliccare invece su “Impostazioni cookie”. Chiudendo il banner o continuando a navigare saranno installati solo cookie tecnici. Per maggiori dettagli, consultare la Cookie Policy.

Impostazioni cookie
Rifiuta Tutti i cookie
Accetto tutti i cookie
X