libri scuola books Fumetti ebook dvd top ten sconti 0 Carrello


Torna Indietro

congdon peter d. - bayesian hierarchical models
Zoom

Bayesian Hierarchical Models With Applications Using R, Second Edition




Disponibilità: Normalmente disponibile in 20 giorni
A causa di problematiche nell'approvvigionamento legate alla Brexit sono possibili ritardi nelle consegne.


PREZZO
136,98 €
NICEPRICE
130,13 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Pubblicazione: 10/2019
Edizione: Edizione nuova, 2° edizione





Note Editore

An intermediate-level treatment of Bayesian hierarchical models and their applications, this book demonstrates the advantages of a Bayesian approach to data sets involving inferences for collections of related units or variables, and in methods where parameters can be treated as random collections. Through illustrative data analysis and attention to statistical computing, this book facilitates practical implementation of Bayesian hierarchical methods. The new edition is a revision of the book Applied Bayesian Hierarchical Methods. It maintains a focus on applied modelling and data analysis, but now using entirely R-based Bayesian computing options. It has been updated with a new chapter on regression for causal effects, and one on computing options and strategies. This latter chapter is particularly important, due to recent advances in Bayesian computing and estimation, including the development of rjags and rstan. It also features updates throughout with new examples. The examples exploit and illustrate the broader advantages of the R computing environment, while allowing readers to explore alternative likelihood assumptions, regression structures, and assumptions on prior densities. Features: Provides a comprehensive and accessible overview of applied Bayesian hierarchical modelling Includes many real data examples to illustrate different modelling topics R code (based on rjags, jagsUI, R2OpenBUGS, and rstan) is integrated into the book, emphasizing implementation Software options and coding principles are introduced in new chapter on computing Programs and data sets available on the book’s website




Sommario

Contents Preface 1. Bayesian Methods for Complex Data: Estimation and Inference 2. Bayesian Analysis Options in R, and Coding for BUGS, JAGS, and Stan 3. Model Fit, Comparison, and Checking 4. Borrowing Strength via Hierarchical Estimation 5. Time Structured Priors 6. Representing Spatial Dependence 7. Regression Techniques Using Hierarchical Priors 8. Bayesian Multilevel Models 9. Factor Analysis, Structural Equation Models, and Multivariate Priors 10. Hierarchical Models for Longitudinal Data 11. Survival and Event History Models 12. Hierarchical Methods for Nonlinear and Quantile Regression




Autore

Peter Congdon is Research Professor in Quantitative Geography and Health Statistics at Queen Mary, University of London.










Altre Informazioni

ISBN:

9781498785754

Condizione: Nuovo
Dimensioni: 10 x 7 in Ø 2.67 lb
Formato: Copertina rigida
Illustration Notes:70 b/w images and 25 tables
Pagine Arabe: 580
Pagine Romane: xii


Dicono di noi