libri scuola books Fumetti ebook dvd top ten sconti 0 Carrello


Torna Indietro

johnson alicia a. ; ott miles q. ; dogucu mine - bayes rules!
Zoom

Bayes Rules! An Introduction to Applied Bayesian Modeling

; ;




Disponibilità: Normalmente disponibile in 20 giorni
A causa di problematiche nell'approvvigionamento legate alla Brexit sono possibili ritardi nelle consegne.


PREZZO
77,98 €
NICEPRICE
74,08 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Pubblicazione: 03/2022
Edizione: 1° edizione





Note Editore

An engaging, sophisticated, and fun introduction to the field of Bayesian statistics, Bayes Rules!: An Introduction to Applied Bayesian Modeling brings the power of modern Bayesian thinking, modeling, and computing to a broad audience. In particular, the book is an ideal resource for advanced undergraduate statistics students and practitioners with comparable experience. the book assumes that readers are familiar with the content covered in a typical undergraduate-level introductory statistics course. Readers will also, ideally, have some experience with undergraduate-level probability, calculus, and the R statistical software. Readers without this background will still be able to follow along so long as theyare eager to pick up these tools on the fly as all R code is provided.Bayes Rules! empowers readers to weave Bayesian approaches into their everyday practice. Discussions and applications are data driven. A natural progression from fundamental to multivariable, hierarchical models emphasizes a practical and generalizable model building process. The evaluation of these Bayesian models reflects the fact that a data analysis does not exist in a vacuum. Features • Utilizes data-driven examples and exercises. • Emphasizes the iterative model building and evaluation process. • Surveys an interconnected range of multivariable regression and classification models. • Presents fundamental Markov chain Monte Carlo simulation. • Integrates R code, including RStan modeling tools and the bayesrules package. • Encourages readers to tap into their intuition and learn by doing. • Provides a friendly and inclusive introduction to technical Bayesian concepts. • Supports Bayesian applications with foundational Bayesian theory.




Sommario

Chapter 1 The Big (Bayesian) Picture Chapter 2 Bayes’ Rule Chapter 3 The Beta-Binomial Bayesian Model Chapter 4 Balance and Sequentiality in Bayesian Analyses Chapter 5 Conjugate Families Chapter 6 Approximating the Posterior Chapter 7 MCMC Under the Hood Chapter 8 Posterior Inference and Prediction Chapter 9 Simple Normal Regression Chapter 10 Evaluating Regression Models Chapter 11 Extending the Normal Regression Model Chapter 12 Poisson and Negative Binomial Regression Chapter 13 Logistic Regression Chapter 14 Naive Bayes Classification Chapter 15 Hierarchical Models are Exciting Chapter 16 (Normal) Hierarchical Models Without Predictors Chapter 17 (Normal) Hierarchical Models With Predictors Chapter 18 Non-Normal Hierarchical Regression & Classification Chapter 19 Adding More Layers Bibliography Index




Autore

Alicia Johnson is an Associate Professor of Statistics at Macalester College in Saint Paul, Minnesota. She enjoys exploring and connecting students to Bayesian analysis, computational statistics, and the power of data in contributing to this shared world of ours. Miles Ott is a Senior Data Scientist at The Janssen Pharmaceutical Companies of Johnson & Johnson. Prior to his current position, he taught at Carleton College, Augsburg University, and Smith College. He is interested in biostatistics, LGBTQ+ health research, analysis of social network data, and statistics/data science education. He blogs at milesott.com and tweets about statistics, gardening, and his dogs on Twitter. Mine Dogucu is an Assistant Professor of Teaching in the Department of Statistics at University of California Irvine. She spends majority of her time thinking about what to teach, how to teach it, and what tools to use while teaching. She likes intersectional feminism, cats, and R Ladies. She tweets about statistics and data science education on Twitter.










Altre Informazioni

ISBN:

9780367255398

Condizione: Nuovo
Collana: Chapman & Hall/CRC Texts in Statistical Science
Dimensioni: 10 x 7 in Ø 2.25 lb
Formato: Brossura
Illustration Notes:102 b/w images, 134 color images, 18 tables, 1 halftone, 3 color halftones, 101 line drawings and 131 color line drawings
Pagine Arabe: 521
Pagine Romane: xxii


Dicono di noi





Per noi la tua privacy è importante


Il sito utilizza cookie ed altri strumenti di tracciamento che raccolgono informazioni dal dispositivo dell’utente. Oltre ai cookie tecnici ed analitici aggregati, strettamente necessari per il funzionamento di questo sito web, previo consenso dell’utente possono essere installati cookie di profilazione e marketing e cookie dei social media. Cliccando su “Accetto tutti i cookie” saranno attivate tutte le categorie di cookie. Per accettare solo deterninate categorie di cookie, cliccare invece su “Impostazioni cookie”. Chiudendo il banner o continuando a navigare saranno installati solo cookie tecnici. Per maggiori dettagli, consultare la Cookie Policy.

Impostazioni cookie
Rifiuta Tutti i cookie
Accetto tutti i cookie
X