
Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.
Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente
This two-volume set LNCS 15992-15993 constitutes the proceedings of the 20th International Conference on Availability, Reliability and Security, ARES 2025, in Ghent, Belgium, during August 11-14, 2025.
The 34 full papers presented in this book together with 8 short papers were carefully reviewed and selected from 186 submissions.
They cover topics such as: Privacy-Enhancing Technologies and Legal Compliance; Network and Communication Security; IoT and Embedded Systems Security; Machine Learning and Privacy; Usable Security and Awareness; System Security; Supply Chain Security, Malware and Forensics; and Machine Learning and Security.
Usable Security and Awareness: QRisk: Think Before You Scan QR codes.- Evaluating Argon2 Adoption and Effectiveness in Real-World Software.- AdvisoryHub: Design and Evaluation of a Cross-Platform Security Advisory System for Cyber Situational Awareness.- Service-aware password risk meter – Helping users to choose suitable passwords in services. System Security: TEE-Assisted Recovery and Upgrades for Long-Running BFT Services.- Fast and Efficient Secure L1 Caches for SMT.- FatPTE - Expanding Page Table Entries for Security.- CHERI UNCHAINED: Generic Instruction and Register Control for CHERI Capabilities.- Exploring speculation barriers for RISC-V selective speculation.- Do we still need canaries in the coal mine? Measuring shadow stack effectiveness in countering stack smashing. Supply Chain Security, Malware and Forensics: SoK: Towards Reproducibility for Software Packages in Scripting Language Ecosystems.- Clustering Malware at Scale: A First Full-Benchmark Study.- Advances in Automotive Digital Forensics: Recent Trends and Future Directions.- Exploring the Susceptibility to Fraud of Monetary Incentive Mechanisms for Strengthening FOSS Projects. Machine Learning and Security: Multi-Agent Simulation and Reinforcement Learning to Optimize Moving Target Defense.- LeaX: Class-Focused Explanations for Locating Leakage in Learning-based Profiling Attacks.- Large Language Models are Unreliable for Cyber Threat Intelligence.- Augmented Tabular Adversarial Evasion Attacks with Constraint Satisfaction Guarantees.- TTP Classification with Minimal Labeled Data: A Retrieval-Based Few-Shot Learning Approach.- C2 Beaconing Detection via AI-based Time-Series Analysis.- Fooling Rate and Perceptual Similarity: A Study on the Effectiveness and Quality of DCGAN-based Adversarial Attacks.


Il sito utilizza cookie ed altri strumenti di tracciamento che raccolgono informazioni dal dispositivo dell’utente. Oltre ai cookie tecnici ed analitici aggregati, strettamente necessari per il funzionamento di questo sito web, previo consenso dell’utente possono essere installati cookie di profilazione e marketing e cookie dei social media. Cliccando su “Accetto tutti i cookie” saranno attivate tutte le categorie di cookie. Per accettare solo deterninate categorie di cookie, cliccare invece su “Impostazioni cookie”. Chiudendo il banner o continuando a navigare saranno installati solo cookie tecnici. Per maggiori dettagli, consultare la Cookie Policy.