Applied Machine Learning - Forsyth David | Libro Springer 07/2019 - HOEPLI.it


home libri books ebook dvd e film top ten sconti 0 Carrello


Torna Indietro

forsyth david - applied machine learning

Applied Machine Learning




Disponibilità: solo 1 copia disponibile, compra subito!

Se ordini entro 12 ore e 40 minuti, consegna garantita in 48 ore lavorative
scegliendo le spedizioni Express



PREZZO
104,20 €
NICEPRICE
88,57 €
SCONTO
15%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con App18 Bonus Cultura e Carta Docenti


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Editore:

Springer

Pubblicazione: 07/2019
Edizione: 1st ed. 2019





Sommario

1. Learning to Classify.- 2. SVM’s and Random Forests.- 3. A Little Learning Theory.- 4. High-dimensional Data.- 5. Principal Component Analysis.-  6. Low Rank Approximations.- 7. Canonical Correlation Analysis.- 8. Clustering.- 9. Clustering using Probability Models.- 10. Regression.- 11. Regression: Choosing and Managing Models.- 12. Boosting.- 13. Hidden Markov Models.- 14. Learning Sequence Models Discriminatively.- 15. Mean Field Inference.- 16. Simple Neural Networks.- 17. Simple Image Classi?ers.- 18. Classifying Images and Detecting Objects.- 19. Small Codes for Big Signals.- Index.




Trama

Machine learning methods are now an important tool for scientists, researchers, engineers and students in a wide range of areas.  This book is written for people who want to adopt and use the main tools of machine learning, but aren’t necessarily going to want to be machine learning researchers. Intended for students in final year undergraduate or first year graduate computer science programs in machine learning, this textbook is a machine learning toolkit. Applied Machine Learning covers many topics for people who want to use machine learning processes to get things done, with a strong emphasis on using existing tools and packages, rather than writing one’s own code.

A companion to the author's Probability and Statistics for Computer Science, this book picks up where the earlier book left off (but also supplies a summary of probability that the reader can use).

Emphasizing the usefulness of standard machinery from applied statistics, this textbook gives an overview of the major applied areas in learning, including coverage of:
• classification using standard machinery (naive bayes; nearest neighbor; SVM)
• clustering and vector quantization (largely as in PSCS)
• PCA (largely as in PSCS)
• variants of PCA (NIPALS; latent semantic analysis; canonical correlation analysis)
• linear regression (largely as in PSCS)
• generalized linear models including logistic regression
• model selection with Lasso, elasticnet
• robustness and m-estimators
• Markov chains and HMM’s (largely as in PSCS)
• EM in fairly gory detail; long experience teaching this suggests one detailed example is required, which students hate; but once they’ve been through that, the next one is easy
• simple graphical models (in the variational inference section)
• classification with neural networks, with a particular emphasis on
image classification
• autoencoding with neural networks
• structure learning




Autore

David Forsyth grew up in Cape Town. He received a B.Sc. (Elec. Eng.) from the University of the Witwatersrand, Johannesburg in 1984, an M.Sc. (Elec. Eng.) from that university in 1986, and a D.Phil. from Balliol College, Oxford in 1989. He spent three years on the faculty at the University of Iowa, ten years on the faculty at the University of California at Berkeley, and then moved to the University of Illinois. He served as program co-chair for IEEE Computer Vision and Pattern Recognition in 2000, 2011, 2018 and 2021; general co-chair for CVPR 2006 and ICCV 2019, and program co-chair for the European Conference on Computer Vision 2008, and is a regular member of the program committee of all major international conferences on computer vision. He has served six terms on the SIGGRAPH program committee. In 2006, he received an IEEE technical achievement award, in 2009 he was named an IEEE Fellow, and in 2014 he was named an ACM Fellow. He served as Editor-in-Chief of IEEE TPAMI from 2014-2017. He is lead co-author of Computer Vision: A Modern Approach, a textbook of computer vision that ran to two editions and four languages. He is sole author of Probability and Statistics for Computer Science, which provides the background for this book. Among a variety of odd hobbies, he is a compulsive diver, certi?ed up to normoxic trimix level.







Altre Informazioni

ISBN:

9783030181130

Condizione: Nuovo
Dimensioni: 279 x 210 mm Ø 1572 gr
Formato: Copertina rigida
Illustration Notes:73 Illustrations, black and white
Pagine Arabe: 494
Pagine Romane: xxi






Utilizziamo i cookie di profilazione, anche di terze parti, per migliorare la navigazione, per fornire servizi e proporti pubblicità in linea con le tue preferenze. Se vuoi saperne di più o negare il consenso a tutti o ad alcuni cookie clicca qui. Chiudendo questo banner o proseguendo nella navigazione acconsenti all’uso dei cookie.

X