
Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.
Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente
This three-volume set LNCS 15825-15827 constitutes the proceedings of the 23rd International Conference on Applied Cryptography and Network Security, ACNS 2025, held in Munich, Germany, during June 23-26, 2025.
The 55 full papers included in these proceedings were carefully reviewed and selected from 241 submissions. The papers cover all technical aspects of applied cryptography, network and computer security and privacy, representing both academic research work as well as developments in industrial and technical frontiers.
Quantum & Post-Quantum: Everlasting Fully Dynamic Group Signatures.- From ElGamal to Lattice-Based: Enhancing the Helios Voting System with Quantum-Safe Cryptography.- Post-Quantum Cryptography for Linux File System Integrity. Biometrics & Authentication: SEBioID: Secure and Effcient Biometric Identification with Two-Party Computation.- SoK: Continuous User Authentication Beyond Error Rates: Reviewing General System Properties.- Cancelable Biometrics based on Cosine Locality Sensitive Hashing and Grouped Inner Product Transformation for Real-valued Features. Privacy: PARSAN-Mix: Packet-Aware Routing and Shuffing with Additional Noise for Latency Optimization in Mix Networks.- ProvDP: Differential Privacy for System Provenance Dataset.- A New Quadratic Noisy Functional Encryption Scheme and Ist Application for Privacy Preserving Machine Learning.- FNSA: An Adaptive Privacy Protection Model for Trajectory Data.- SPPM: A Stackelberg Game-based Personalized Privacy-Preserving Model in Mobile Crowdsensing Systems. Machine Learning: Homomorphic WiSARDs: Effcient Weightless Neural Network training over encrypted data.- LaserGuider: A Laser Based Physical Backdoor Attack against Deep Neural Networks.- Recovering S-Box Design Structures and Quantifying Distances between S-Boxes using Deep Learning.- Obfuscation for Deep Neural Networks against Model-based Extraction Attacks: Taxonomy and Optimization.


Il sito utilizza cookie ed altri strumenti di tracciamento che raccolgono informazioni dal dispositivo dell’utente. Oltre ai cookie tecnici ed analitici aggregati, strettamente necessari per il funzionamento di questo sito web, previo consenso dell’utente possono essere installati cookie di profilazione e marketing e cookie dei social media. Cliccando su “Accetto tutti i cookie” saranno attivate tutte le categorie di cookie. Per accettare solo deterninate categorie di cookie, cliccare invece su “Impostazioni cookie”. Chiudendo il banner o continuando a navigare saranno installati solo cookie tecnici. Per maggiori dettagli, consultare la Cookie Policy.