libri scuola books Fumetti ebook dvd top ten sconti 0 Carrello


Torna Indietro

gopal dhananjay; deshmukh aniruddha; ranadive abhay s; yadav shubham - an introduction to metric spaces
Zoom

An Introduction to Metric Spaces

; ; ;




Disponibilità: Normalmente disponibile in 20 giorni
A causa di problematiche nell'approvvigionamento legate alla Brexit sono possibili ritardi nelle consegne.


PREZZO
42,98 €
NICEPRICE
40,83 €
SCONTO
5%



Questo prodotto usufruisce delle SPEDIZIONI GRATIS
selezionando l'opzione Corriere Veloce in fase di ordine.


Pagabile anche con Carta della cultura giovani e del merito, 18App Bonus Cultura e Carta del Docente


Facebook Twitter Aggiungi commento


Spese Gratis

Dettagli

Genere:Libro
Lingua: Inglese
Pubblicazione: 02/2022
Edizione: 1° edizione





Note Editore

This book serves as a textbook for an introductory course in metric spaces for undergraduate or graduate students. Thegoal is to present the basics of metric spaces in a natural and intuitive way and encourage students to think geometrically while actively participating in the learning of this subject. In this book, the authors illustrated the strategy of the proofs of various theorems that motivate readers to complete themon their own. Bits of pertinent history are infused in the text, including brief biographies of some of the central players in the development of metric spaces. The textbook is divided into seven chapters thatcontain the main materials on metric spaces; namely, introductory concepts, completeness, compactness, connectedness, continuous functions and metric fixed point theorems with applications. Some of the noteworthy features of this book include · Diagrammatic illustrations that encourage readers to think geometrically · Focus on systematic strategy to generate ideas for the proofs of theorems · A wealth of remarks, observations along with a variety of exercises · Historical notes and brief biographies appearing throughout the text




Sommario

Contents Prefaceix A Note to the Readerxiii Authorsxv 1 Set Theory 1 1.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 The empty set . . . . . . . . . . . . . . . . . . . . . . 4 1.1.2 Operations on sets . . . . . . . . . . . . . . . . . . . . 5 1.1.3 Uniqueness of the empty set . . . . . . . . . . . . . . . 9 1.1.4 Power sets . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.1.5 Cartesian products . . . . . . . . . . . . . . . . . . . . 9 1.2 Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.2.1 Types of relations . . . . . . . . . . . . . . . . . . . . 12 1.2.2 Equivalence relations . . . . . . . . . . . . . . . . . . . 13 1.2.3 Partition of sets . . . . . . . . . . . . . . . . . . . . . 15 1.2.4 Partial order relations . . . . . . . . . . . . . . . . . . 16 1.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.3.1 Composition of functions . . . . . . . . . . . . . . . . 24 1.3.2 Inverse of a function . . . . . . . . . . . . . . . . . . . 26 1.3.3 Images of sets under functions . . . . . . . . . . . . . 32 1.3.4 Inverse images of sets under functions . . . . . . . . . 36 1.4 Countability of Sets . . . . . . . . . . . . . . . . . . . . . . . 39 1.4.1 Finite sets . . . . . . . . . . . . . . . . . . . . . . . . . 41 1.4.2 Countable sets . . . . . . . . . . . . . . . . . . . . . . 44 Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 51 2 Metric Spaces 55 2.1 Review of Real Number System and Absolute Value . . . . . 55 2.2 Young, H¨older, andMinkowski Inequalities . . . . . . . . . . 57 2.3 Notion ofMetric Space . . . . . . . . . . . . . . . . . . . . . 64 2.4 Open Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 2.4.1 Subspace topology . . . . . . . . . . . . . . . . . . . . 96 2.4.2 Product topology . . . . . . . . . . . . . . . . . . . . . 97 2.5 Closed Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 2.6 Interior, Exterior, and Boundary Points . . . . . . . . . . . . 101 2.7 Limit and Cluster Points . . . . . . . . . . . . . . . . . . . . 104 2.8 Bounded Sets . . . . . . . . . . . . . . . . . . . . . . . . . . 110 2.9 Distance Between Sets . . . . . . . . . . . . . . . . . . . . . 112 2.10 EquivalentMetrics . . . . . . . . . . . . . . . . . . . . . . . . 115 Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 125 3 Complete Metric Spaces 129 3.1 Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 3.1.1 Subsequences . . . . . . . . . . . . . . . . . . . . . . . 130 3.2 Convergence of Sequence . . . . . . . . . . . . . . . . . . . . 131 3.3 CompleteMetric Spaces . . . . . . . . . . . . . . . . . . . . . 139 3.4 Completion ofMetric Spaces . . . . . . . . . . . . . . . . . . 143 3.4.1 Construction of the set Z . . . . . . . . . . . . . . . . 145 3.4.2 Embedding X in Z . . . . . . . . . . . . . . . . . . . . 147 3.4.3 Proving Z is complete . . . . . . . . . . . . . . . . . . 147 3.4.4 Uniqueness of extension up to isometry . . . . . . . . 148 3.5 Baire Category Theorem . . . . . . . . . . . . . . . . . . . . 149 3.5.1 Category of sets . . . . . . . . . . . . . . . . . . . . . 149 3.5.2 Baire category theorem . . . . . . . . . . . . . . . . . 151 3.5.3 Applications of Baire category theorem . . . . . . . . 153 Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 158 4 Compact Metric Spaces 161 4.1 Open Cover and Compact Sets . . . . . . . . . . . . . . . . . 161 4.2 General Properties of Compact Sets . . . . . . . . . . . . . . 165 4.3 Sufficient Conditions for Compactness . . . . . . . . . . . . . 169 4.4 Sequential Compactness . . . . . . . . . . . . . . . . . . . . . 172 4.5 Compactness: Characterizations . . . . . . . . . . . . . . . . 174 Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 180 5 Connected Spaces 183 5.1 Connectedness . . . . . . . . . . . . . . . . . . . . . . . . . . 183 5.1.1 Connected subsets . . . . . . . . . . . . . . . . . . . . 185 5.2 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 5.3 Totally Disconnected Spaces . . . . . . . . . . . . . . . . . . 192 Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 6 Continuity 195 6.1 Continuity of Real Valued Functions . . . . . . . . . . . . . . 195 6.2 Continuous Functions in ArbitraryMetric Spaces . . . . . . 197 6.2.1 Equivalent definitions of continuity and other characterizations . . . . . . . . . . . . . . . . . . . . . 202 6.2.2 Results on continuity . . . . . . . . . . . . . . . . . . . 210 6.3 Uniform Continuity . . . . . . . . . . . . . . . . . . . . . . . 217 6.4 Continuous Functions on Compact Spaces . . . . . . . . . . . 224 6.5 Continuous Functions on Connected Spaces . . . . . . . . . . 229 6.5.1 Path connectedness . . . . . . . . . . . . . . . . . . . . 237 6.6 Equicontinuity and Arzela-Ascoli’s Theorem . . . . . . . . . 242 6.7 Open and ClosedMaps . . . . . . . . . . . . . . . . . . . . . 245 6.8 Homeomorphism . . . . . . . . . . . . . . . . . . . . . . . . . 246 Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 252 7 Banach Fixed Point Theorem and Its Applications 255 7.1 Banach Contraction Theorem . . . . . . . . . . . . . . . . . 255 7.2 Applications of Banach Contraction Principle . . . . . . . . . 260 7.2.1 Root finding problem . . . . . . . . . . . . . . . . . . 260 7.2.2 Solution of systemof linear algebraic equations . . . . 261 7.2.3 Picard existence theorem for differential equations . . 264 7.2.4 Solutions of integral equations . . . . . . . . . . . . . 267 7.2.5 Solutions of initial value and boundary value problems . . . . . . . . . . . . . . . . . . . . . . . . . 271 7.2.6 Implicit function theorem . . . . . . . . . . . . . . . . 273 Problem Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274 Biographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . 276 Appendix A 277 Bibliography 281 Index 283




Autore

Dr. Dhananjay Gopal has a doctorate in Mathematics from Guru Ghasidas University, Bilaspur, India, and is currently Assistant Professor of Applied Mathematics in S V National Institute of Technology, Surat, Gujarat, India. He is author and co-author of several papers in journals, proceedings, and a monograph on Background and Recent Developments of Metric Fixed Point Theory. He is devoted to general research on the theory of Nonlinear Analysis and Fuzzy Metric Fixed Point Theory. Mr. Aniruddha Deshmukh is currently a student of (Integrated) MSc Mathematics and is associated to the Applied Mathematics and Humanities Department, S V National Institute of Technology, Surat, Gujarat, India. He has been an active student in the department and has initiated many activities for the benefit of the students, especially as a member of the science community (student chapter), known by the name of SCOSH. During his course, he has also attended various internships and workshop such as the Mathematics Training and Talent Search (MTTS) Programme for two consecutive years (2017–2018) and has also done a project on the qualitative questions on Differential Equations at Indian Institute of Technology (IIT), Gandhinagar, Gujarat, India in 2019. He has also qualified CSIR-NET JRF. Furthermore, his research interest focuses on Linear Algebra and Analysis and their applicability in solving some real-world problems. Abhay S. Ranadive is a Professor at the Department of Pure & Applied Mathematics Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chattisgarh, India. He has been teaching at the university for the last 30 years. He is author and co-author of several papers in journals and proceedings. He is devoted to general research on the theory of fuzzy sets and fuzzy logic, modules, and metric fixed point. Mr. Shubham Yadav is currently a student of (Integrated) M.Sc. Mathematics and is associated to the Applied Mathematics and Humanities Department, S V National Institute of Technology, Surat, Gujarat, India. As a member of SCOSH the student prominent science community in the institute, he has attended and organized various workshops and seminars. He also attended Madhava Mathematics Camp 2017. He did an internship on the calculus of fuzzy numbers at NIT, Trichy and one on operator theory at IIT, Hyderabad. He has also qualified for JRF. His main research interests are functional analysis and fuzzy sets with a knack for learning abstract mathematical concepts.










Altre Informazioni

ISBN:

9780367493493

Condizione: Nuovo
Dimensioni: 9.25 x 6.25 in Ø 1.00 lb
Formato: Brossura
Illustration Notes:50 b/w images
Pagine Arabe: 286
Pagine Romane: xvi


Dicono di noi





Per noi la tua privacy è importante


Il sito utilizza cookie ed altri strumenti di tracciamento che raccolgono informazioni dal dispositivo dell’utente. Oltre ai cookie tecnici ed analitici aggregati, strettamente necessari per il funzionamento di questo sito web, previo consenso dell’utente possono essere installati cookie di profilazione e marketing e cookie dei social media. Cliccando su “Accetto tutti i cookie” saranno attivate tutte le categorie di cookie. Per accettare solo deterninate categorie di cookie, cliccare invece su “Impostazioni cookie”. Chiudendo il banner o continuando a navigare saranno installati solo cookie tecnici. Per maggiori dettagli, consultare la Cookie Policy.

Impostazioni cookie
Rifiuta Tutti i cookie
Accetto tutti i cookie
X